The Milky Way shaped life on Earth

According to new results published by Dr. Henrik Svensmark of the Danish National Space Center in the journal Astronomische Nachrichten, the variability in the productivity of life is closely linked to the cosmic rays, the atomic bullets that rain down on the Earth from exploded stars. They were most intense during a baby boom of stars, many of which blew up.

‘The odds are 10,000 to 1 against this unexpected link between cosmic rays and the variable state of the biosphere being just a coincidence, and it offers a new perspective on the connection between the evolution of the Milky Way and the entire history of life over the last 4 billion years,’ Dr Svensmark comments.

Dr Svensmark looked at the long record of life’s bounty given by counts of heavy carbon atoms, carbon-13, in sedimentary rocks. When bacteria and algae in the ocean grow by taking in carbon dioxide, they prefer the ordinary carbon-12 atoms. As a result, the sea becomes enriched in carbon-13, which is acceptable to sea creatures building their carbonate shells. Variations in carbon-13 therefore record how much photosynthetic growth was in progress when the shell-makers were alive – in other words, how productive the biosphere was at that time.

To his surprise, Dr Svensmark noticed that the biggest fluctuations in productivity coincided with high star formation rates and cool periods in Earth’s climate. Conversely, during a billion years when star formation was slow, cosmic rays were less intense and Earth’s climate was warmer, the biosphere was almost unchanging in its productivity.

This reveals a link more subtle than any straightforward idea of, say, a warm climate being life-friendly or a cold climate deadly. The record shows that in all icy epochs the biosphere kept lurching between exceptionally low and exceptionally high productivity. The suggested reason is that, although ice is unfriendly to life, winds are stronger when the world is cold. By stirring the oceans, they improve the supply of nutrients in the surface waters so much that productivity can be higher than in a warm climate. And this, in effect, enlarges the fluctuations in biological productivity.

Most likely, the variations in cosmic radiation affected biological productivity through their influence on cloud formation. Hence, the stellar baby boom 2.4 billion years ago, which resulted in an extraordinarily large number of supernova explosions, had a chilling effect on Earth probably by increasing the cloud cover.

This is one of a number of new perspectives on climate change arising from the discovery that cosmic rays promote the formation of clouds, which have a cooling effect on the surface temperature of Earth. Recent experiments on how the cosmic rays influence cloud formation were reported in DNSC press release 3 October 2006.

Media Contact

Sune Nordentoft Lauritsen alfa

All news from this category: Physics and Astronomy

This area deals with the fundamental laws and building blocks of nature and how they interact, the properties and the behavior of matter, and research into space and time and their structures.

innovations-report provides in-depth reports and articles on subjects such as astrophysics, laser technologies, nuclear, quantum, particle and solid-state physics, nanotechnologies, planetary research and findings (Mars, Venus) and developments related to the Hubble Telescope.

Back to the Homepage

Comments (0)

Write comment

Latest posts

Researchers confront optics and data-transfer challenges with 3D-printed lens

Researchers have developed new 3D-printed microlenses with adjustable refractive indices – a property that gives them highly specialized light-focusing abilities. This advancement is poised to improve imaging, computing and communications…

Research leads to better modeling of hypersonic flow

Hypersonic flight is conventionally referred to as the ability to fly at speeds significantly faster than the speed of sound and presents an extraordinary set of technical challenges. As an…

Researchers create ingredients to produce food by 3D printing

Food engineers in Brazil and France developed gels based on modified starch for use as “ink” to make foods and novel materials by additive manufacturing. It is already possible to…

By continuing to use the site, you agree to the use of cookies. more information

The cookie settings on this website are set to "allow cookies" to give you the best browsing experience possible. If you continue to use this website without changing your cookie settings or you click "Accept" below then you are consenting to this.

Close