Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Plastic-Protein Hybrid Materials

21.12.2001


Enzymatic films for bioactive surfaces



We encounter them every day in laundry detergent, dishwashing liquid, or shower gel: surfactants - surface-active substances. Surfactants belong to a category of molecules called amphiphiles, molecular hermaphrodites consisting of a water-loving (hydrophilic) "head" and a water-hating (hydrophobic) "tail". Most surfacants are small amphiphilic molecules. However, an international research team working with Roeland J. M. Nolte, University of Nijmegen, has now built "giant amphiphiles", hybrid molecules made of proteins and polymers. These new molecules are not just meant to clean better, they could find uses in biochips as well.

What’s so special about amphiphiles? In aqueous solutions, they organize themselves so that the hydrophobic tails have as little contact with the water as possible. This leads to structures such as micelles, vesicles, or films on the surface of the water (with the amphiphiles’ heads in the water and their tails in the air).


The researchers chose to use the protein streptavidin as the hydrophilic head for the construction of their giant amphiphiles. Streptavidin is made of four identical substructures that are set opposite each other in pairs. Each substructure has a binding site for biotin, a small molecule that is classified among the vitamins. This is what the Dutch researchers use to attach their hydrophobic tail; first they attach biotin molecules to polystyrene, and then they couple two biotinylated polystyrene chains to two neighboring binding sites on the streptovidin. The two opposite binding sites are left open. Just like their smaller cousins, the giant amphiphiles form films on the surface of water.

Next the empty binding sites on the streptovidin come into play; the researchers attach enzymes or other functional proteins, again by using biotin molecules. For example, Nolte and his colleagues tried this with horseradish peroxidase. The catalytic activity of the peroxidase is retained, even when it is coupled to the film.

All of this results in a polymer film with densely packed functional enzymes hanging from it. "Such a film is useful as a biosensor, or as a catalyst," explains Nolte. "Because of their dimensions and their amphiphilic character, plastic-protein hybrids are predestined for lab-on-chip technology."

Frank Maass | alohagalileo

More articles from Life Sciences:

nachricht Scientists uncover the role of a protein in production & survival of myelin-forming cells
19.07.2018 | Advanced Science Research Center, GC/CUNY

nachricht NYSCF researchers develop novel bioengineering technique for personalized bone grafts
18.07.2018 | New York Stem Cell Foundation

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Future electronic components to be printed like newspapers

A new manufacturing technique uses a process similar to newspaper printing to form smoother and more flexible metals for making ultrafast electronic devices.

The low-cost process, developed by Purdue University researchers, combines tools already used in industry for manufacturing metals on a large scale, but uses...

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

A smart safe rechargeable zinc ion battery based on sol-gel transition electrolytes

20.07.2018 | Power and Electrical Engineering

Reversing cause and effect is no trouble for quantum computers

20.07.2018 | Information Technology

Princeton-UPenn research team finds physics treasure hidden in a wallpaper pattern

20.07.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>