Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Plastic-Protein Hybrid Materials

21.12.2001


Enzymatic films for bioactive surfaces



We encounter them every day in laundry detergent, dishwashing liquid, or shower gel: surfactants - surface-active substances. Surfactants belong to a category of molecules called amphiphiles, molecular hermaphrodites consisting of a water-loving (hydrophilic) "head" and a water-hating (hydrophobic) "tail". Most surfacants are small amphiphilic molecules. However, an international research team working with Roeland J. M. Nolte, University of Nijmegen, has now built "giant amphiphiles", hybrid molecules made of proteins and polymers. These new molecules are not just meant to clean better, they could find uses in biochips as well.

What’s so special about amphiphiles? In aqueous solutions, they organize themselves so that the hydrophobic tails have as little contact with the water as possible. This leads to structures such as micelles, vesicles, or films on the surface of the water (with the amphiphiles’ heads in the water and their tails in the air).


The researchers chose to use the protein streptavidin as the hydrophilic head for the construction of their giant amphiphiles. Streptavidin is made of four identical substructures that are set opposite each other in pairs. Each substructure has a binding site for biotin, a small molecule that is classified among the vitamins. This is what the Dutch researchers use to attach their hydrophobic tail; first they attach biotin molecules to polystyrene, and then they couple two biotinylated polystyrene chains to two neighboring binding sites on the streptovidin. The two opposite binding sites are left open. Just like their smaller cousins, the giant amphiphiles form films on the surface of water.

Next the empty binding sites on the streptovidin come into play; the researchers attach enzymes or other functional proteins, again by using biotin molecules. For example, Nolte and his colleagues tried this with horseradish peroxidase. The catalytic activity of the peroxidase is retained, even when it is coupled to the film.

All of this results in a polymer film with densely packed functional enzymes hanging from it. "Such a film is useful as a biosensor, or as a catalyst," explains Nolte. "Because of their dimensions and their amphiphilic character, plastic-protein hybrids are predestined for lab-on-chip technology."

Frank Maass | alohagalileo

More articles from Life Sciences:

nachricht Platinum nanoparticles for selective treatment of liver cancer cells
15.02.2019 | ETH Zurich

nachricht New molecular blueprint advances our understanding of photosynthesis
15.02.2019 | DOE/Lawrence Berkeley National Laboratory

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Regensburg physicists watch electron transfer in a single molecule

For the first time, an international team of scientists based in Regensburg, Germany, has recorded the orbitals of single molecules in different charge states in a novel type of microscopy. The research findings are published under the title “Mapping orbital changes upon electron transfer with tunneling microscopy on insulators” in the prestigious journal “Nature”.

The building blocks of matter surrounding us are atoms and molecules. The properties of that matter, however, are often not set by these building blocks...

Im Focus: University of Konstanz gains new insights into the recent development of the human immune system

Scientists at the University of Konstanz identify fierce competition between the human immune system and bacterial pathogens

Cell biologists from the University of Konstanz shed light on a recent evolutionary process in the human immune system and publish their findings in the...

Im Focus: Transformation through Light

Laser physicists have taken snapshots of carbon molecules C₆₀ showing how they transform in intense infrared light

When carbon molecules C₆₀ are exposed to an intense infrared light, they change their ball-like structure to a more elongated version. This has now been...

Im Focus: Famous “sandpile model” shown to move like a traveling sand dune

Researchers at IST Austria find new property of important physical model. Results published in PNAS

The so-called Abelian sandpile model has been studied by scientists for more than 30 years to better understand a physical phenomenon called self-organized...

Im Focus: Cryo-force spectroscopy reveals the mechanical properties of DNA components

Physicists from the University of Basel have developed a new method to examine the elasticity and binding properties of DNA molecules on a surface at extremely low temperatures. With a combination of cryo-force spectroscopy and computer simulations, they were able to show that DNA molecules behave like a chain of small coil springs. The researchers reported their findings in Nature Communications.

DNA is not only a popular research topic because it contains the blueprint for life – it can also be used to produce tiny components for technical applications.

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Global Legal Hackathon at HAW Hamburg

11.02.2019 | Event News

The world of quantum chemistry meets in Heidelberg

30.01.2019 | Event News

Our digital society in 2040

16.01.2019 | Event News

 
Latest News

Gravitational waves will settle cosmic conundrum

15.02.2019 | Physics and Astronomy

Spintronics by 'straintronics'

15.02.2019 | Physics and Astronomy

Platinum nanoparticles for selective treatment of liver cancer cells

15.02.2019 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>