Scientists Use Temperature to Tune a Tiny Laser’s Color

The tell-tale signature of most lasers used in everyday applications—from bar-code scanners to pen-size pointers—is a bright red glow. The color is determined by the light’s wavelength, and most lasers emit at only one wavelength. Now a new report published in the current issue of the journal Nature describes a light source measuring only tens of millimeters across that changes color according to temperature.

To make the new laser, Diederik Wiersma and Stefano Cavalieri of the European Laboratory for Non-linear Spectroscopy in Florence, Italy, manipulated the properties of a so-called random laser. Random lasers use light-diffusing material—often in the form of a fine powder—to trap light within the system long enough for amplification to occur. The more the light scatters, the larger the overall gain of the laser.

The researchers placed a liquid crystal inside a random laser source. By heating the crystal and changing the arrangement of its atoms, they could control the amount of light scattering within the laser and hence the color of emitted light. This so-called tunable random laser, the authors conclude, may one day find application as a source in active displays and temperature-sensitive screens or as a remote temperature-sensing device.

Media Contact

Sarah Graham Scientific American

Alle Nachrichten aus der Kategorie: Power and Electrical Engineering

This topic covers issues related to energy generation, conversion, transportation and consumption and how the industry is addressing the challenge of energy efficiency in general.

innovations-report provides in-depth and informative reports and articles on subjects ranging from wind energy, fuel cell technology, solar energy, geothermal energy, petroleum, gas, nuclear engineering, alternative energy and energy efficiency to fusion, hydrogen and superconductor technologies.

Zurück zur Startseite

Kommentare (0)

Schreib Kommentar

Neueste Beiträge

Rotation of a molecule as an “internal clock”

Using a new method, physicists at the Heidelberg Max Planck Institute for Nuclear Physics have investigated the ultrafast fragmentation of hydrogen molecules in intense laser fields in detail. They used…

3D printing the first ever biomimetic tongue surface

Scientists have created synthetic soft surfaces with tongue-like textures for the first time using 3D printing, opening new possibilities for testing oral processing properties of food, nutritional technologies, pharmaceutics and…

How to figure out what you don’t know

Increasingly, biologists are turning to computational modeling to make sense of complex systems. In neuroscience, researchers are adapting the kinds of algorithms used to forecast the weather or filter spam…

By continuing to use the site, you agree to the use of cookies. more information

The cookie settings on this website are set to "allow cookies" to give you the best browsing experience possible. If you continue to use this website without changing your cookie settings or you click "Accept" below then you are consenting to this.

Close