Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Genetic insights may explain retinal growth, eye cancer

10.05.2006
St. Jude investigators discover role of several key genes in retina development

Investigators at St. Jude Children’s Research Hospital have discovered the role of several key genes in the development of the retina, and in the process have taken a significant step toward understanding how to prevent or cure the potentially deadly eye cancer retinoblastoma. Retinoblastoma is the third most common cancer in infants after leukemia and neuroblastoma (nerve cancer). Retinoblastoma that has spread outside the eye is among the deadliest childhood cancers, with an average survival rate of less than 10 percent.

A key finding of the new study is that humans are more susceptible to developing retinoblastoma than mice, because mice can compensate for the loss of a gene critical to normal retinal development while humans cannot. The results of the study appear in the open-access journal BMC Biology.

"Our study gives us important new information on the normal development of the retina and suggests new studies that could lead to the design of more effective drugs to treat retinoblastoma," said Michael Dyer, Ph.D., an associate member of the Department of Developmental Neurobiology at St. Jude and senior author of the paper.

The researchers discovered that during the development of the retina in mice, three genes that belong to the Rb gene family are expressed at different times. Specifically, the p107 gene is active before birth in cells that are going to become the retina. This gene ensures that the retinal cells stop multiplying at the proper time during development of this tissue. The Rb gene is expressed after birth in those cells that are actively multiplying as they also help form the retina.

In addition, the St. Jude team found that when Rb was inactivated during development of the mouse retina, the two p107 gene copies were up-regulated--made more active--therefore compensating for this loss of Rb activity. Importantly, this compensation required the presence of both p107 genes. In turn, when p107 was inactivated, Rb activity was upregulated; but unlike with p107, this compensation required only one copy of Rb.

The St. Jude team proposes that the ability of Rb and p107 to compensate for the absence of each other in mice prevents the developing retinal cells from multiplying uncontrollably and causing retinoblastoma. Also, the expression of both Rb and p130 might prevent this cancer in mice.

However, researchers learned that conditions in humans are not the same as in mice. They found that the primary Rb gene family member active in the developing human retina is RB1, and unlike in the mouse, little p107 is expressed in the developing human retina. In addition, p107 is not up-regulated to compensate for a loss of RB1 activity.

"This could explain why humans are susceptible to retinoblastoma following RB1 gene mutations, while mice require inactivation of both Rb and p107, or both Rb and p130," said Dyer.

The discovery by the St. Jude team that p107 is not expressed during development of the retina in humans suggests that it might be possible in the future to prevent retinoblastoma by "turning on" that gene, Dyer noted.

"Because the eye is visible to researchers studying retinoblastoma, it’s possible to watch a tumor grow from a single cell," said Stacy Donovan, Ph.D., a postdoctoral fellow in Dyer’s laboratory. "This could tell us which type of cell in the developing eye causes this cancer."

"Knowing which cell causes retinoblastoma would give researchers a specific target for a novel retinoblastoma drug," added Brett Schweers, Ph.D. a postdoctoral fellow in Dyer’s laboratory at St. Jude. "The biochemical pathway driving the multiplication of a cancer cell of origin would differ, depending on whether it was a progenitor cell or one of the more specialized cells. So it would be important to know which type of cell is giving rise to the tumor. That way you could design a drug to knock out the pathway driving the abnormal growth in that particular cell."

Donovan and Schweers are the first and second authors respectively of the paper and contributed equally to the work.

Dyer’s team previously developed the first reliable mouse models of retinoblastoma that could be used to test new drug therapies for this tumor: http://www.stjude.org/media/0,2561,453_5485_11388,00.html.

Subsequently, the team used these models to demonstrate that a combination of topotecan and carboplatin were superior to the current treatment being used to treat retinoblastoma: http://www.stjude.org/developmental-neurobiology/0,2522,414_2041_19593,00.html.

Other authors of the paper include Rodrigo Martins of St. Jude and Dianna Johnson (University of Tennessee).

Bonnie Kourvelas | EurekAlert!
Further information:
http://www.stjude.org
http://www.stjude.org/media/0,2561,453_5485_11388,00.html
http://www.stjude.org/developmental-neurobiology/0,2522,414_2041_19593,00.html

More articles from Life Sciences:

nachricht Mass spectrometry sheds new light on thallium poisoning cold case
14.12.2018 | University of Maryland

nachricht Protein involved in nematode stress response identified
14.12.2018 | University of Illinois College of Agricultural, Consumer and Environmental Sciences

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Data use draining your battery? Tiny device to speed up memory while also saving power

The more objects we make "smart," from watches to entire buildings, the greater the need for these devices to store and retrieve massive amounts of data quickly without consuming too much power.

Millions of new memory cells could be part of a computer chip and provide that speed and energy savings, thanks to the discovery of a previously unobserved...

Im Focus: An energy-efficient way to stay warm: Sew high-tech heating patches to your clothes

Personal patches could reduce energy waste in buildings, Rutgers-led study says

What if, instead of turning up the thermostat, you could warm up with high-tech, flexible patches sewn into your clothes - while significantly reducing your...

Im Focus: Lethal combination: Drug cocktail turns off the juice to cancer cells

A widely used diabetes medication combined with an antihypertensive drug specifically inhibits tumor growth – this was discovered by researchers from the University of Basel’s Biozentrum two years ago. In a follow-up study, recently published in “Cell Reports”, the scientists report that this drug cocktail induces cancer cell death by switching off their energy supply.

The widely used anti-diabetes drug metformin not only reduces blood sugar but also has an anti-cancer effect. However, the metformin dose commonly used in the...

Im Focus: New Foldable Drone Flies through Narrow Holes in Rescue Missions

A research team from the University of Zurich has developed a new drone that can retract its propeller arms in flight and make itself small to fit through narrow gaps and holes. This is particularly useful when searching for victims of natural disasters.

Inspecting a damaged building after an earthquake or during a fire is exactly the kind of job that human rescuers would like drones to do for them. A flying...

Im Focus: Topological material switched off and on for the first time

Key advance for future topological transistors

Over the last decade, there has been much excitement about the discovery, recognised by the Nobel Prize in Physics only two years ago, that there are two types...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

ICTM Conference 2019: Digitization emerges as an engineering trend for turbomachinery construction

12.12.2018 | Event News

New Plastics Economy Investor Forum - Meeting Point for Innovations

10.12.2018 | Event News

EGU 2019 meeting: Media registration now open

06.12.2018 | Event News

 
Latest News

Data use draining your battery? Tiny device to speed up memory while also saving power

14.12.2018 | Power and Electrical Engineering

Tangled magnetic fields power cosmic particle accelerators

14.12.2018 | Physics and Astronomy

In search of missing worlds, Hubble finds a fast evaporating exoplanet

14.12.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>