Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Pores for thought

01.11.2001


Dazzling snapshots show how ions power nerve signals round the body.


Hole story: channels like this underlie all our movements and thoughts.
© Nature/Morais-Cabral et al.


The seventh seal: ions other than potassium can’t get through
© Nature/Zhou et al.



"Potassium channels underlie all our movements and thoughts," says Rod MacKinnon of Rockefeller University in New York. His team has now unravelled the molecular mechanics of these minute protein pores. Some say the work merits a Nobel Prize.

Potassium (K+) channels power the transmission of nerve signals through the body and the brain by ushering K+ ions in and out of our cells. MacKinnon and his colleagues have taken high-resolution snapshots of the channels in action, revealing how, and how fast, individual K+ ions pass through1,2. It’s a remarkable feat - the K+ channel’s aperture is more than a hundred thousand times thinner than a sheet of paper, at under six Angstroms wide.


The role of K+ channels in nerves has made them "poster children", but they are important throughout biology, says Christopher Miller, who studies ion channels at Brandeis University in Waltham, Massachusetts. They are present in the lowliest of amoebae and in the cells of the most complex brains.

The latest images of the K+ channel protein are "dazzling", says Miller. They reveal how cells exploit the positive charge of K+ ions to produce the voltage that powers nerve signals.

For MacKinnon, seeing nature’s economy of design in the finest detail is just as fascinating: "It’s beautiful in how simple it is," he says.

Channel hopping

Using a technique called X-ray crystallography to image different concentrations of K+ ions in K+ channels, MacKinnon’s team has shown the precise route that the ions take. "It’s almost like you see the ions going through the channel," says MacKinnon.

The team has found that K+ ions can occupy one of seven positions, five of which only admit K+ ions. The ions hop through the pore, skipping a position at a time as more ions push them through from behind.

Measuring electrical fluctuations across the channel, McKinnon’s team calculate how much energy the K+ ions need to hop from position to position. The channel turns out to be so well tuned to K+ ions that they need almost no energy to pass through, thereby excluding other ions.

"This explains how [the channels] can be so fast yet so selective at the same time," says Miller. How the channels shuttle only K+ ions faster than a speeding nerve impulse had baffled biologists for decades.

Hole new world

In 1999 MacKinnon received the Lasker Award in basic medical research for revealing the detailed structure of the K+ channel>3. He is now widely tipped as a future recipient of the Noble Prize. The latest work only strengthens that prediction, says Miller: "This is the kind of work that opens up a whole new world."

Its MacKinnon’s systematic approach to deciphering how the K+ channel works, as well as the channel’s scientific significance, that warrants the ultimate scientific prize, says Fred Sigworth, a molecular physiologist at Yale University School of Medicine in New Haven, Connecticut. "These latest images are only the end of a string of wonderful discoveries by Mackinnon," he says. "We’re talking about a body of work starting in the 1990s."

It’s always nice to be recognized, admits MacKinnon, but a possible Nobel Prize does not motivate his research. "I am having so much fun doing the science," he says. "Nothing can come close to the satisfaction that gives me."

In fact, having reached "a very deep level of understanding" of K+ channels, MacKinnon now intends to move on to examine how cells open and close their ion channels.

References
  1. Morais-Cabral, J. H., Zhou, Y. & MacKinnon, R. Energetic optimisation of ion conduction rate by the K+ selectivity filter. Nature, 414, 37 - 42, (2001).

  2. Zhou, Y., Morais-Cabral, J. H., Kaufman, A. & MacKinnon, R. Chemistry of ion hydration and coordination revealed by a K+ channel-Fab complex at 2.0 A resolution. Nature, 414, 43 - 48, (2001).

  3. Doyle, D. A. et al. The structure of the potassium channel: molecular basis of K+ conduction and selectivity. Science, 280, 69 - 77, (1998).


TOM CLARKE | Nature News Service
Further information:
http://www.nature.com/nsu/011101/011101-12.html
http://www.nature.com/nsu/

More articles from Life Sciences:

nachricht Good preparation is half the digestion
15.11.2018 | Max-Planck-Institut für Stoffwechselforschung

nachricht How the gut ‘talks’ to brown fat
16.11.2018 | Technische Universität München

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Chip with Blood Vessels

Biochips have been developed at TU Wien (Vienna), on which tissue can be produced and examined. This allows supplying the tissue with different substances in a very controlled way.

Cultivating human cells in the Petri dish is not a big challenge today. Producing artificial tissue, however, permeated by fine blood vessels, is a much more...

Im Focus: A Leap Into Quantum Technology

Faster and secure data communication: This is the goal of a new joint project involving physicists from the University of Würzburg. The German Federal Ministry of Education and Research funds the project with 14.8 million euro.

In our digital world data security and secure communication are becoming more and more important. Quantum communication is a promising approach to achieve...

Im Focus: Research icebreaker Polarstern begins the Antarctic season

What does it look like below the ice shelf of the calved massive iceberg A68?

On Saturday, 10 November 2018, the research icebreaker Polarstern will leave its homeport of Bremerhaven, bound for Cape Town, South Africa.

Im Focus: Penn engineers develop ultrathin, ultralight 'nanocardboard'

When choosing materials to make something, trade-offs need to be made between a host of properties, such as thickness, stiffness and weight. Depending on the application in question, finding just the right balance is the difference between success and failure

Now, a team of Penn Engineers has demonstrated a new material they call "nanocardboard," an ultrathin equivalent of corrugated paper cardboard. A square...

Im Focus: Coping with errors in the quantum age

Physicists at ETH Zurich demonstrate how errors that occur during the manipulation of quantum system can be monitored and corrected on the fly

The field of quantum computation has seen tremendous progress in recent years. Bit by bit, quantum devices start to challenge conventional computers, at least...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

“3rd Conference on Laser Polishing – LaP 2018” Attracts International Experts and Users

09.11.2018 | Event News

On the brain’s ability to find the right direction

06.11.2018 | Event News

European Space Talks: Weltraumschrott – eine Gefahr für die Gesellschaft?

23.10.2018 | Event News

 
Latest News

Massive impact crater from a kilometer-wide iron meteorite discovered in Greenland

15.11.2018 | Earth Sciences

When electric fields make spins swirl

15.11.2018 | Physics and Astronomy

Discovery of a cool super-Earth

15.11.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>