Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Mayo researchers lead team that discovers role of dendritic cells in childhood autoimmune disease

14.11.2005


Provides new strategy for designing better treatments

Mayo Clinic researchers, working with colleagues at the University of Minnesota and University of Pittsburgh, are the first to describe a new role for a specialized cell of the immune system in children suffering from a rare muscle-damaging disease known as juvenile dermatomyositis (JDM). The specialized cells, called dendritic cells, have never before been found inside muscle tissue of JDM patients -- a discovery that suggests they are tightly linked to initiation of the disease process. The finding opens new possibilities for designing better treatments for JDM, and possibly for other related diseases such as multiple sclerosis, rheumatoid arthritis and lupus.

The Mayo Clinic-led research team report will be presented Nov. 14 as part of the American College of Rheumatology’s annual meeting in San Diego, Calif., held Nov. 12-17.



Significance of the Research

Mayo Clinic researchers compared samples of muscle tissue from children with JDM to children with other disorders. Their findings are important not only for determining what causes JDM and designing new treatments for it, but for understanding an entire class of diseases in which the body’s immune system gets mixed up and attacks "self" as if it were a foreigner, or "nonself." These are known as autoimmune diseases, and there are about 80 distinct autoimmune disorders. As a group, they are relatively common and include rheumatoid arthritis, lupus and multiple sclerosis. Autoimmune disorders share the general trait of the body failing to recognize itself, and erroneously mounting an immune attack that destroys function. Insights gained in JDM may possibly be applied to other autoimmune diseases.

Explains Ann Reed, M.D., Mayo Clinic pediatric rheumatologist/immunologist who led the investigation: "Under the microscope, it looked so dramatic to see the dendritic cells maturing in the muscle tissue and then migrating out into the bloodstream -- and to realize it was a process which no one has ever documented before. And it was a surprise. Usually few dendritic cells reside in muscle as immature cells; they sort of hang out in case they’re needed in an immune response. But, we determined that they are actually maturing in the muscle tissues in response to something in the muscle tissue itself."

This finding is important because a central question in JDM research has always been: Do the dendritic cells get activated in muscle tissue? Or, do they get activated outside of the tissue? The research by Mayo Clinic and collaborators provides the first proof that the dendritic cells get activated inside muscle tissues and then may move out into the bloodstream. Says Dr. Reed: "When you think about it as a clinician, it’s really exciting because it shows what is happening in the muscle that starts the disease -- and holds out the possibility that it is maybe something that we can turn off in new treatments we develop by targeting the mechanism in the muscle tissue. And that’s really neat stuff for our patients."

About JDM

JDM is a rare (5 in 1 million children) autoimmune disorder of young children characterized by inflammation of the blood vessels under the muscle and skin. This results in muscle damage, as well as in tissue changes of skin over the eyelids, finger joints and knuckles. Symptoms appear gradually and include: muscle pain and tenderness; difficulty swallowing, which results in weight loss; irritability; fatigue; fever; and rash around the eyelids, finger joints, knuckles, elbows, ankles or knees.

Diagnosis may involve the following: blood tests to detect muscle enzymes and markers of inflammation; an electromyography (EMG) to assess nerve or muscle damage; muscle biopsy for examination; X-rays; and MRI. While there is no cure for JDM, there are treatment options. They include medications to reduce inflammation and skin rashes; physical and occupational therapy to improve muscle function; and nutritional support. Children with JDM may suffer organ failure in the same way transplant patients often do when their bodies fail to accept donated organs in graft-versus-host disease.

Lisa Lucier | EurekAlert!
Further information:
http://www.mayoclinic.com

More articles from Life Sciences:

nachricht Protein interaction helps Yersinia cause disease
21.08.2018 | Schwedischer Forschungsrat - The Swedish Research Council

nachricht Nanobot pumps destroy nerve agents
21.08.2018 | American Chemical Society

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: It’s All in the Mix: Jülich Researchers are Developing Fast-Charging Solid-State Batteries

There are currently great hopes for solid-state batteries. They contain no liquid parts that could leak or catch fire. For this reason, they do not require cooling and are considered to be much safer, more reliable, and longer lasting than traditional lithium-ion batteries. Jülich scientists have now introduced a new concept that allows currents up to ten times greater during charging and discharging than previously described in the literature. The improvement was achieved by a “clever” choice of materials with a focus on consistently good compatibility. All components were made from phosphate compounds, which are well matched both chemically and mechanically.

The low current is considered one of the biggest hurdles in the development of solid-state batteries. It is the reason why the batteries take a relatively long...

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

 
Latest News

A paper battery powered by bacteria

21.08.2018 | Power and Electrical Engineering

Protein interaction helps Yersinia cause disease

21.08.2018 | Life Sciences

Biosensor allows real-time oxygen monitoring for 'organs-on-a-chip'

21.08.2018 | Medical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>