Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Animal model of Parkinson’s disease reveals striking sensitivity to common environmental toxins

07.09.2005


In findings that support a relationship between agricultural chemicals and Parkinson’s disease, two groups of researchers have found new evidence that loss of DJ-1, a gene known to be linked to inherited Parkinson’s disease, leads to striking sensitivity to the herbicide paraquat and the insecticide rotenone. The two studies were performed with the fruit fly Drosophila, a widely used model organism for studies of human disease, and shed new light on biological connections between inherited and sporadic forms of Parkinson’s disease.



The work is reported in Current Biology by two independent groups, one led by Nancy Bonini of the University of Pennsylvania and the Howard Hughes Medical Institute, and the other led by Kyung-Tai Min of the NINDS branch of the U.S. National Institutes of Health.

Parkinson’s disease occurs both sporadically and as a result of inheritance of single gene mutations. One of the most common neurodegenerative disorders, it is associated with the progressive and selective loss of a specific population of neurons in the brain, the dopaminergic neurons of the substantia nigra pars compacta . Exposure to several common environmental toxins, thought to injure neurons through oxidative damage, has been shown to be associated with sporadic forms of Parkinson’s disease. During the past decade, researchers have also made remarkable progress in identifying genes responsible for inherited forms of Parkinson’s disease, with the expectation that understanding the function of these genes will elucidate mechanisms behind sporadic Parkinson’s disease. Past work had shown that one form of familial Parkinson’s disease results from a loss of function of a gene called DJ-1.


The fruit fly possesses two versions of the DJ-1 gene, and in the new work, the researchers simulated the human Parkinson’s disease situation by deleting one or both forms of DJ-1 from the fly’s DNA.

Bonini and colleagues showed that flies lacking both forms of DJ-1 activity are normal under standard conditions. However, upon exposure to widely used agricultural agents, including paraquat and rotenone, previously associated with the sporadic form of Parkinson’s disease, the flies show strikingly increased sensitivity and death. These findings suggest that loss of DJ-1 function leads to an increased sensitivity to chemical agents that cause oxidative damage.

Min and his colleagues found that loss of function of one form of fly DJ-1, DJ-1b, caused a compensatory boost in expression of the other form of the gene, DJ-1a. These flies, lacking DJ-1â function but having increased DJ-1á activity, showed extended survival of dopaminergic neurons and resistance to oxidative stress caused by the chemical paraquat, but at the same time they also exhibited acute sensitivity to hydrogen peroxide treatment. The results showed that overexpression of DJ-1a in dopaminergic neurons is sufficient to confer protection against paraquat insult.

Together, the results from the two studies suggest that Drosophila DJ-1 genes, and potentially human DJ-1, play critical roles in the survival of dopaminergic neurons and the response to oxidative cellular stress. In addition, the studies also highlight DJ-1 as a potential therapeutic target for the treatment of Parkinson’s disease.

Heidi Hardman | EurekAlert!
Further information:
http://www.current-biology.com

More articles from Life Sciences:

nachricht Staying in Shape
16.08.2018 | Max-Planck-Institut für molekulare Zellbiologie und Genetik

nachricht Chips, light and coding moves the front line in beating bacteria
16.08.2018 | Okinawa Institute of Science and Technology (OIST) Graduate University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

Im Focus: Lining up surprising behaviors of superconductor with one of the world's strongest magnets

Scientists have discovered that the electrical resistance of a copper-oxide compound depends on the magnetic field in a very unusual way -- a finding that could help direct the search for materials that can perfectly conduct electricity at room temperatur

What happens when really powerful magnets--capable of producing magnetic fields nearly two million times stronger than Earth's--are applied to materials that...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

2018 Work Research Conference

25.07.2018 | Event News

 
Latest News

Staying in Shape

16.08.2018 | Life Sciences

Diving robots find Antarctic seas exhale surprising amounts of carbon dioxide in winter

16.08.2018 | Earth Sciences

Protein droplets keep neurons at the ready and immune system in balance

16.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>