Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New discovery blurs distinction between human cells and those of bacteria

10.08.2005


UCLA biochemists reveal the first structural details of a family of mysterious objects called microcompartments that seem to be present in a variety of bacteria. The discovery was published Aug. 5 in the journal Science.



"This is the first look at how microcompartments are built, and what the pieces look like," said Todd O. Yeates, UCLA professor of chemistry and biochemistry, and a member of the UCLA-DOE Institute of Genomics and Proteomics. "These microcompartments appear to be highly evolved machines, and we are just now learning how they are put together and how they might work. We can see the particular amino acids and atoms."

A key distinction separating the cells of primitive organisms like bacteria, known as prokaryotes, from the cells of complex organisms like humans is that complex cells -- eukaryotic cells -- have a much higher level of subcellular organization; eukaryotic cells contain membrane-bound organelles, such as mitochondria, the tiny power generators in cells. Cells of prokaryotes have been viewed as very primitive, although some contain unusual enclosures known as microcompartments, which appear to serve as primitive organelles inside bacterial cells, carrying out special reactions in their interior.


"Students who take a biology class learn in the first three days that cells of prokaryotes are uniform and without organization, while cells of eukaryotes have a complex organization," Yeates said. "That contrast is becoming less stark; we are learning there is more of a continuum than a sharp divide. These microcompartments, which resemble viruses because they are built from thousands of protein subunits assembled into a shell-like architecture, are an important component of bacteria. I expect there will be a much greater focus on them now."

Yeates’ Science paper reveals the first structures of the proteins that make up these shells, and the first high-resolution insights into how they function.

"Those microcompartments have remained shrouded in mystery, largely because of an absence of a detailed understanding of their architecture, of what the structures look like," said Yeates, who also is a member of the California NanoSystems Institute and UCLA’s Molecular Biology Institute. "The complete three-dimensional structure is still unknown, but in this paper we have provided the first three-dimensional structure of the building blocks of the carboxysome, a protein shell which is the best-studied microcompartment."

The UCLA biochemists also report 199 related proteins that presumably do similar things in 50 other bacteria, Yeates said.

"Our findings blur the distinction between eukaryotic cells and those of prokaryotes by arguing that bacterial cells are more complex than one would imagine, and that many of them have evolved sophisticated mechanisms," Yeates said.

While microcompartments have been directly observed in only a few organisms, "surely there will be many more," Yeates said. "The capacity to create subcellular compartments is very widespread across diverse microbes. We believe that many prokaryotes have the capacity to create subcellular compartments to organize their metabolic activities."

Yeates’ research team includes research scientist and lead author Cheryl Kerfeld; Michael Sawaya, a research scientist with UCLA and the Howard Hughes Medical Institute; Shiho Tanaka, a former UCLA undergraduate who is starting graduate work at UCLA this fall in biochemistry; and UCLA chemistry and biochemistry graduate student Morgan Beeby.

The structure of the carboxysome shows a repeating pattern of six protein molecules packed closely together.

"We didn’t know six would be the magic number," Yeates said. "What surprises me is how nearly these six protein molecules fill the space between them. If you take six pennies and place them in the shape of a ring, that leaves a large space in the middle. Yet the shape of this protein molecule is such that when six proteins come together, they nearly fill the space; what struck me is how tightly packed they are. That tells us the shell plays an important role in controlling what comes in and goes out. When we saw how the many hexagons come together, we saw that they filled the space tightly as well."

The UCLA biochemists determined the structures from their analysis of small crystals, using X-ray crystallography. How microcompartments fold into their functional shapes remains a mystery.

Yeates’ laboratory will continue to study the structures of microcompartments from other organisms.

If microcompartments can be engineered, biotechnology applications potentially could arise from this research, Yeates said.

Stuart Wolpert | EurekAlert!
Further information:
http://www.college.ucla.edu

More articles from Life Sciences:

nachricht A novel synthetic antibody enables conditional “protein knockdown” in vertebrates
20.08.2018 | Technische Universität Dresden

nachricht Climate Impact Research in Hannover: Small Plants against Large Waves
17.08.2018 | Leibniz Universität Hannover

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: It’s All in the Mix: Jülich Researchers are Developing Fast-Charging Solid-State Batteries

There are currently great hopes for solid-state batteries. They contain no liquid parts that could leak or catch fire. For this reason, they do not require cooling and are considered to be much safer, more reliable, and longer lasting than traditional lithium-ion batteries. Jülich scientists have now introduced a new concept that allows currents up to ten times greater during charging and discharging than previously described in the literature. The improvement was achieved by a “clever” choice of materials with a focus on consistently good compatibility. All components were made from phosphate compounds, which are well matched both chemically and mechanically.

The low current is considered one of the biggest hurdles in the development of solid-state batteries. It is the reason why the batteries take a relatively long...

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

 
Latest News

Quantum bugs, meet your new swatter

20.08.2018 | Information Technology

A novel synthetic antibody enables conditional “protein knockdown” in vertebrates

20.08.2018 | Life Sciences

Metamolds: Molding a mold

20.08.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>