Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Artificial Cobweb Proteins For Medicine

30.05.2005


A unique material based on cobweb proteins is being created by Russian researchers of the State Research Center of Russian Federation GosNIIgentics, Scientific Research Center “Coal-Chemical Fiber”, State Research Center of Applied Microbiology in cooperation with their colleagues from Michigan University with support form the International Science and Technology Center (ISTC) (project 1033.2).



The spider’s hunting net is built from several different proteins. Researchers are mostly interested in the proteins of cobweb framework filaments, which make them extremely strong (the rupture strength of these filaments is several times higher than that of steel) and elastic at the same time. Cobweb framework filaments consist of two proteins: spidroin-1 and spidroin-2. They differ slightly in their properties: spidroin-1 is considered to be stronger, and spidroin-2 – more elastic. Together they account for unique properties of spider’s web. Such material would prove useful for multiple purposes, but fist of all – for medicine: as suture material, artificial ligaments and tendons, films for healing wounds and burns, etc.

Unfortunately, it is impossible to synthesize these proteins chemically in a laboratory – they are too complicated. However, it is possible to get the protein by synthesizing a respective gene and making it work within the composition of some microorganism. The scientists have chosen this particular biotechnological way.


At the first stage of the project (June 1999 through May 2000), the researchers focused on obtaining spidroin-1. The problem is that the structure of this protein has not been fully decoded, and the international database does not contain its complete amino acid sequence. Only fragments are available there. But the researchers decided to try and use the known fragment for the gene synthesis and obtaining a recombinant protein.

They succeeded in synthesizing the gene that codes the spidroin-1fragment, its size making 400 pairs of nucleotides. The gene contained in plasmid was transferred into Saccharomices cerevisiae yeast plants and made sure that the gene does work inside the yeast plant – the yeast produces protein. The researchers developed original methods for educing and rectifying recombinant proteins.With their help the scientists have already produced hundreds of milligrams of the product.

Refined protein should be dissolved, which is a complicated task as the protein solution of such concentration (40 percent) – 400 milligrams in one milliliter – cannot be received by ordinary methods. To dissolve the protein, sodium thiocyanate was used, thus providing the so-called spinning solution. A filament should be spun from it as a spider does. To this end, the researchers developed special methods and got a filament which, however, did not yet possess either cobweb’s strength or elasticity.

At the second stage of the project (2002 through 2004), the researchers started to work concurrently to also obtain recombinant spidroin-2. The structure of the most part of this protein is known, but it is extremely complicated. Before the gene for spidroin-2 could be synthesized, it was necessary to thoroughly analyze amino acids sequence in the molecule. Mathematicians addressed the issue and discovered periodically recurrent sequences in the chain. Thanks to that, it became possible to divide the molecule into monomeric units and to handle individual units.

“In such a way we assemble a gene, says Vladimir Bogush. This is a very lengthy work and it has not been finished yet. But our final goal is to get a complete analogue of the spidroin-2 natural gene.”

While the researchers are handling the spidroin-2 complicated gene, concurrently a recombinant protein – analogue to spidroin-2 – was received through synthesizing the gene that corresponds to one of its fragments (similar to the way they worked with spidroin-1). The scientists created a gene, inserted it into yeast plants and got the protein. In this case, however, the researchers applied a different species of yeast –Pichia pastoris, special culture of which ideally suits for biotechnological manipulations due to peculiar mutation.

Availability of protein in selected yeast plants is checked by electrophoresis method – a fascia appears on the plate, its position corresponding to its molecular mass.

The yeast grows and produces protein in a special apparatus - fermenter. Some days later, the cell suspension with finished product is partially poured off, fresh cultural medium is added, and the cycle is reiterated. Therefore, the process is called “quasi- continuous”.

At this stage, the researchers also improved the process of artificial spinning and learned to get a strong elastic filament. The filament was tested for strength on special devices by the specialists of the Scientific-Research Center “Coal-Chemical Fiber” in the town of Mytishchi. A filament being several microns thick can stand for rupture of 50 to 100 milligrams of weight. “Our filament has turned out to be only four times less strong than that of a spider, says Vladimir Bogush, project manager, and this is a very good result.”

The protein can be used to produce not only filaments but also films. In this form it is supposed to be used for production of healing coating for wounds and burns, which will not be rejected by the organism and will stimulate regeneration of its own epithelium. In the meanwhile, the films produced from recombinant protein were investigated for toxicity in experiments with cell culture. The conclusion made by the researchers is that the films are non-toxic.

When the researchers succeed to finalize the synthesis of a very complicated gene and to get a full natural analogue to spidroin-2, it will be possible to mix two proteins in different ratio changing the properties this or that way and to bring artificial spidery filament to perfection.

Sergey Komarov | alfa
Further information:
http://www.informnauka.ru

More articles from Life Sciences:

nachricht How molecules teeter in a laser field
18.01.2019 | Forschungsverbund Berlin

nachricht Discovery of enhanced bone growth could lead to new treatments for osteoporosis
18.01.2019 | University of California - Los Angeles

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Ten-year anniversary of the Neumayer Station III

The scientific and political community alike stress the importance of German Antarctic research

Joint Press Release from the BMBF and AWI

The Antarctic is a frigid continent south of the Antarctic Circle, where researchers are the only inhabitants. Despite the hostile conditions, here the Alfred...

Im Focus: Ultra ultrasound to transform new tech

World first experiments on sensor that may revolutionise everything from medical devices to unmanned vehicles

The new sensor - capable of detecting vibrations of living cells - may revolutionise everything from medical devices to unmanned vehicles.

Im Focus: Flying Optical Cats for Quantum Communication

Dead and alive at the same time? Researchers at the Max Planck Institute of Quantum Optics have implemented Erwin Schrödinger’s paradoxical gedanken experiment employing an entangled atom-light state.

In 1935 Erwin Schrödinger formulated a thought experiment designed to capture the paradoxical nature of quantum physics. The crucial element of this gedanken...

Im Focus: Nanocellulose for novel implants: Ears from the 3D-printer

Cellulose obtained from wood has amazing material properties. Empa researchers are now equipping the biodegradable material with additional functionalities to produce implants for cartilage diseases using 3D printing.

It all starts with an ear. Empa researcher Michael Hausmann removes the object shaped like a human ear from the 3D printer and explains:

Im Focus: Elucidating the Atomic Mechanism of Superlubricity

The phenomenon of so-called superlubricity is known, but so far the explanation at the atomic level has been missing: for example, how does extremely low friction occur in bearings? Researchers from the Fraunhofer Institutes IWM and IWS jointly deciphered a universal mechanism of superlubricity for certain diamond-like carbon layers in combination with organic lubricants. Based on this knowledge, it is now possible to formulate design rules for supra lubricating layer-lubricant combinations. The results are presented in an article in Nature Communications, volume 10.

One of the most important prerequisites for sustainable and environmentally friendly mobility is minimizing friction. Research and industry have been dedicated...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Our digital society in 2040

16.01.2019 | Event News

11th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Aachen, 3-4 April 2019

14.01.2019 | Event News

ICTM Conference 2019: Digitization emerges as an engineering trend for turbomachinery construction

12.12.2018 | Event News

 
Latest News

Additive manufacturing reflects fundamental metallurgical principles to create materials

18.01.2019 | Materials Sciences

How molecules teeter in a laser field

18.01.2019 | Life Sciences

The cytoskeleton of neurons has been found to be involved in Alzheimer's disease

18.01.2019 | Health and Medicine

VideoLinks
Science & Research
Overview of more VideoLinks >>>