Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Gene keeps neural cells on correct developmental path

20.05.2005


Embryonic stem cells with identical genomes grow into distinctive tissues, such as heart, bone, and brain. At one time, scientists believed the differences among cell types arose from various sets of genes switched on inside developing cells. Then, studies showed that adult neurons uniquely lack a protein that permanently turns off neuronal genes in the rest of the body’s cells.



Now, it turns out that precursor nerve cells contain that same repressive protein after all. In fact, the protein directs the complex network of genes that transforms an embryonic stem cell into a mature nerve cell, say Howard Hughes Medical Institute (HHMI) researchers.

This new study, published in the May 20, 2005, issue of the journal Cell, may be among the first to track a set of genes from stem cell to differentiated neuron. It also reveals fundamental details of how stem cells retain developmental plasticity.


"A single protein does it all," said Gail Mandel, HHMI investigator at the State University of New York at Stony Brook. "It keeps the genes totally off in non-neuronal tissues, such as skin, where you don’t dare express a neuronal gene. But it also allows the full elaboration of the neuronal phenotype from the precursor cell."

Led by HHMI associate Nurit Ballas, a postdoctoral fellow in Mandel’s lab, the study may advance stem cell research aimed at understanding repairing spinal cord injuries or replacing malfunctioning brain cells in neurodegenerative diseases. It may also provide insights into other diseases, such as small cell lung cancer, which mistakenly make neuronal proteins, or neurological syndromes, where neuronal proteins produced by cancers may trigger the immune cells to attack the nervous system.

The study focuses on a protein called REST, which is short for RE1-silencing transcription factor. It was independently discovered 10 years ago by Mandel’s group and a second team led by HHMI investigator David J. Anderson at Caltech. Mandel created the acronym to describe how REST quiets the nerve genes. The protein is also known by the name Anderson gave it, NRSF, for neuron-restrictive silencer factor.

Since then, they and others have found that REST locks down neuronal genes in other cells by grabbing onto the DNA and cementing in other molecules, an arrangement that stays intact as non-neuronal cells differentiate into liver, muscle, and other tissues.

The new study reports that REST uses a different temporary off mechanism to direct neuronal development. "This study shows that there is more than one way to keep a REST-regulated gene repressed," said Michael G. Rosenfeld, an HHMI investigator at University of California, San Diego, who co-authored an accompanying commentary in Cell with Victoria Lunyak, a research associate in his lab.

In contrast to the tight packaging of neural genes in other cells, REST keeps the chromatin in embryonic stem and precursor neurons open and poised for gene activity.

"REST keeps the brake on lightly until a trigger tells embryonic stem cells it’s time to make a neuron," Mandel said. The cell then triggers the expression of an ensemble of genes that coordinates nervous system development by removing REST in three distinct phases, ending with shutting down the REST gene.

"The cell gets rid of all the excess protein, kicks it off the DNA, then stomps on its head so it can’t make RNA," Mandel said. "We can’t detect REST in the terminally differentiated neuron." But some molecular partners of REST remain, perhaps fine-tuning gene expression in mature neurons, she said.

REST seems to work globally, binding to the starting points of as many as 1,000 genes at once. The gradual loss of REST in differentiating neurons probably orchestrates a precise sequence of genes sensitive to different levels of REST, Mandel speculates.

REST has been a difficult gene to study. Using knockout technology -- a popular technique for determining gene function -- does not work for REST because mice lacking the gene die before they are born. Embryonic stem cells provided a way for Mandel to get around this problem. Unexpectedly, they also revealed fundamental ways in which stem cells remain plastic.

"This paper is like a whole story, beginning with the birth of a neuron and ending with the death of REST," Mandel said.

Jim Keeley | EurekAlert!
Further information:
http://www.hhmi.org

More articles from Life Sciences:

nachricht Microscope measures muscle weakness
16.11.2018 | Friedrich-Alexander-Universität Erlangen-Nürnberg

nachricht Good preparation is half the digestion
16.11.2018 | Max-Planck-Institut für Stoffwechselforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: UNH scientists help provide first-ever views of elusive energy explosion

Researchers at the University of New Hampshire have captured a difficult-to-view singular event involving "magnetic reconnection"--the process by which sparse particles and energy around Earth collide producing a quick but mighty explosion--in the Earth's magnetotail, the magnetic environment that trails behind the planet.

Magnetic reconnection has remained a bit of a mystery to scientists. They know it exists and have documented the effects that the energy explosions can...

Im Focus: A Chip with Blood Vessels

Biochips have been developed at TU Wien (Vienna), on which tissue can be produced and examined. This allows supplying the tissue with different substances in a very controlled way.

Cultivating human cells in the Petri dish is not a big challenge today. Producing artificial tissue, however, permeated by fine blood vessels, is a much more...

Im Focus: A Leap Into Quantum Technology

Faster and secure data communication: This is the goal of a new joint project involving physicists from the University of Würzburg. The German Federal Ministry of Education and Research funds the project with 14.8 million euro.

In our digital world data security and secure communication are becoming more and more important. Quantum communication is a promising approach to achieve...

Im Focus: Research icebreaker Polarstern begins the Antarctic season

What does it look like below the ice shelf of the calved massive iceberg A68?

On Saturday, 10 November 2018, the research icebreaker Polarstern will leave its homeport of Bremerhaven, bound for Cape Town, South Africa.

Im Focus: Penn engineers develop ultrathin, ultralight 'nanocardboard'

When choosing materials to make something, trade-offs need to be made between a host of properties, such as thickness, stiffness and weight. Depending on the application in question, finding just the right balance is the difference between success and failure

Now, a team of Penn Engineers has demonstrated a new material they call "nanocardboard," an ultrathin equivalent of corrugated paper cardboard. A square...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

“3rd Conference on Laser Polishing – LaP 2018” Attracts International Experts and Users

09.11.2018 | Event News

On the brain’s ability to find the right direction

06.11.2018 | Event News

European Space Talks: Weltraumschrott – eine Gefahr für die Gesellschaft?

23.10.2018 | Event News

 
Latest News

Purdue cancer identity technology makes it easier to find a tumor's 'address'

16.11.2018 | Health and Medicine

Good preparation is half the digestion

16.11.2018 | Life Sciences

Microscope measures muscle weakness

16.11.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>