Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New signaling step for key player in Crohn’s Disease

29.12.2004


This week, researchers report new findings that elucidate the role of NOD2, a key molecular player in Crohn’s Disease, in the cellular signaling pathways that control inflammatory responses. NOD2’s clinical relevance is clear from the fact that it is encoded by a Crohn’s Disease susceptibility gene. Understanding NOD2 has posed a particularly intriguing challenge for researchers because it appears able to somehow both activate and inhibit inflammatory cytokine responses in the cell. The work is reported by Lewis Cantley and colleagues at Harvard Medical School.



Crohn’s Disease is an autoimmune inflammatory disorder of the gastrointestinal tract and is histologically characterized by inflammation, epithelial ulceration, fissure formation, and stenosis of segments of the entire gastrointestinal tract. The disease leads to significant morbidity and is thought to result from an inappropriate immune response to bacteria that normally inhabit the gastrointestinal tract. Because Crohn’s Disease is characterized by too much initial acute inflammation, and, subsequently, too little subsequent negative regulation of that inflammatory response, pro-inflammatory and anti-inflammatory pathways appear to be faulty.

Previous work has shown that NOD2 acts as an intracellular receptor for bacteria and bacterial breakdown products, and because it appears capable of both activating and inhibiting inflammatory responses, NOD2 serves as a key integration point for the gastrointestinal tract’s response to infectious organisms. The biochemical nature of NOD2’s dichotomous role is unknown. In the new work, the researchers shed light on this problem by showing that NOD2 activation leads to the modification of NEMO, a central component of the NF-kB signaling pathway controlling inflammatory responses. NOD2 mutations responsible for Crohn’s Disease cause polymorphisms that prevent the NOD2 protein from properly modifying NEMO. These results suggest that this previously unrecognized modification on a component of the major inflammatory signaling pathway in the body helps to integrate inflammatory signals. These results also suggest that this signaling mechanism may ultimately represent a pharmacological target for the amelioration of Crohn’s Disease.


Derek W. Abbott, Andrew Wilkins, John M. Asara, and Lewis C. Cantley: "The Crohn’s Disease Gene, NOD2, Requires RIP2 in Order to Induce Ubiquitinylation of a Novel Site on NEMO"

Heidi Hardman | EurekAlert!
Further information:
http://www.cell.com
http://www.current-biology.com

More articles from Life Sciences:

nachricht Nonstop Tranport of Cargo in Nanomachines
20.11.2018 | Max-Planck-Institut für molekulare Zellbiologie und Genetik

nachricht Researchers find social cultures in chimpanzees
20.11.2018 | Universität Leipzig

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Nonstop Tranport of Cargo in Nanomachines

Max Planck researchers revel the nano-structure of molecular trains and the reason for smooth transport in cellular antennas.

Moving around, sensing the extracellular environment, and signaling to other cells are important for a cell to function properly. Responsible for those tasks...

Im Focus: UNH scientists help provide first-ever views of elusive energy explosion

Researchers at the University of New Hampshire have captured a difficult-to-view singular event involving "magnetic reconnection"--the process by which sparse particles and energy around Earth collide producing a quick but mighty explosion--in the Earth's magnetotail, the magnetic environment that trails behind the planet.

Magnetic reconnection has remained a bit of a mystery to scientists. They know it exists and have documented the effects that the energy explosions can...

Im Focus: A Chip with Blood Vessels

Biochips have been developed at TU Wien (Vienna), on which tissue can be produced and examined. This allows supplying the tissue with different substances in a very controlled way.

Cultivating human cells in the Petri dish is not a big challenge today. Producing artificial tissue, however, permeated by fine blood vessels, is a much more...

Im Focus: A Leap Into Quantum Technology

Faster and secure data communication: This is the goal of a new joint project involving physicists from the University of Würzburg. The German Federal Ministry of Education and Research funds the project with 14.8 million euro.

In our digital world data security and secure communication are becoming more and more important. Quantum communication is a promising approach to achieve...

Im Focus: Research icebreaker Polarstern begins the Antarctic season

What does it look like below the ice shelf of the calved massive iceberg A68?

On Saturday, 10 November 2018, the research icebreaker Polarstern will leave its homeport of Bremerhaven, bound for Cape Town, South Africa.

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Optical Coherence Tomography: German-Japanese Research Alliance hosted Medical Imaging Conference

19.11.2018 | Event News

“3rd Conference on Laser Polishing – LaP 2018” Attracts International Experts and Users

09.11.2018 | Event News

On the brain’s ability to find the right direction

06.11.2018 | Event News

 
Latest News

Nonstop Tranport of Cargo in Nanomachines

20.11.2018 | Life Sciences

Researchers find social cultures in chimpanzees

20.11.2018 | Life Sciences

When AI and optoelectronics meet: Researchers take control of light properties

20.11.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>