Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Research out this week helps us understand basics of how neurons communicate

06.10.2004


Nerve cells with a mutant calcium channel don’t communicate as effectively as those with a normal calcium channel, according Saint Louis University research that is published in the Proceedings of the National Academy of Sciences Online Early Edition the week of Oct. 4.



"The research helps us understand the basic mechanism that underlies how neurons communicate," said Amy Harkins, Ph.D., assistant professor of pharmacological and physiological science at Saint Louis University School of Medicine and principal investigator.

"The entry of calcium into cells is a very important process that allows muscles to contract, the heart to beat and nerve cells to communicate with one another. The research is teaching us how a very integral part of our cellular structure works."


Communication between nerve cells occurs when calcium enters a nerve cell and causes the cell to release a chemical called a neurotransmitter that then carries a signal to other nerve cells. Calcium cannot freely enter cells, and must wait for an opening of a molecular gate, which is called a calcium channel.

"In this study we removed a specific part of the calcium channel molecule called the ’synaptic protein interaction site’ and put this mutant calcium channel back into cells," Dr. Harkins said. "We found that cells with the mutant calcium channel no longer released neurotransmitter as efficiently as cells with the normal calcium channel."

The research, done in collaboration with investigators at The University of Chicago and Tufts University, is important in helping us understand more about the important process of communication between nerve cells, Dr. Harkins said.

"It gives us a basic understanding of how something works. In some ways, the body is similar to a broken car. When something goes wrong, you can’t fix it if you don’t know how it works."

Saint Louis University findings are published in PNAS online edition

Nancy Solomon | EurekAlert!
Further information:
http://www.slu.edu

More articles from Life Sciences:

nachricht Climate Impact Research in Hannover: Small Plants against Large Waves
17.08.2018 | Leibniz Universität Hannover

nachricht First transcription atlas of all wheat genes expands prospects for research and cultivation
17.08.2018 | Leibniz-Institut für Pflanzengenetik und Kulturpflanzenforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

 
Latest News

Smallest transistor worldwide switches current with a single atom in solid electrolyte

17.08.2018 | Physics and Astronomy

Robots as Tools and Partners in Rehabilitation

17.08.2018 | Information Technology

Climate Impact Research in Hannover: Small Plants against Large Waves

17.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>