Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists Identify Compounds That Mimic Calorie Restriction

11.08.2004


Investigators from an international consortium of research institutes, including the Johns Hopkins Bloomberg School of Public Health, have identified compounds that mimic the effects of a low calorie diet without changing the amount of essential nutrients. The researchers believe it may be possible to design drugs that imitate many of the beneficial effects of calorie restriction resulting in the prevention of diseases, such as diabetes, heart disease and cancer, which are more common in people who are overweight. Their findings are published in the current online issue of the Journal of Biological Chemistry.



Co-author Thomas W. Kensler, PhD, a professor of Environmental Health Sciences at the Johns Hopkins Bloomberg School of Public Health, explained that calorie restriction has intrigued scientists for decades because it increases the life span of almost every species studied. In mammals, calorie restriction suppresses many diseases associated with the obesity epidemic. However, the mechanisms by which calorie restriction suppresses these diseases are not known.

Lead author, J. Christopher Corton, PhD, with ToxicoGenomics in Chapel Hill, N.C., examined the genetic changes that occur during calorie restriction in mice that were fed a diet for one month containing about 35 percent fewer calories than a normal diet. He explained that these genetic changes, which are referred to as a transcript profile, can be used like a bar-code to distinguish a unique profile from other genetic changes that occur in the body. The researchers compared the profile of calorie restriction with the profiles produced by compounds known to have some properties similar to calorie restriction, including the ability to suppress factors that lead to a number of diseases.


The compounds that shared the greatest similarities in the bar codes included those that have activity towards receptors of interest to the pharmaceutical industry. The receptors include those that are targeted by drugs used to treat high cholesterol and triglyceride levels. One of the receptors, called PPARalpha, is a target for drugs that are currently used to treat high cholesterol and triglyceride levels in people at risk for heart disease.

The investigators also compared responses in normal mice to mice that lack a functional PPARalpha to determine if PPARalpha was directly involved in any of the responses that are induced by calorie restriction. They found that the PPARalpha-mutant mice lack many of the characteristics of calorie restriction, including changes in genes that may play important roles in heart disease and cancer. Calorie restriction is also known to protect animals from chemical exposure, and the investigators found that the protection afforded by calorie restriction in normal mice was lost in PPARalpha-mutant mice.

“PPARalpha may be one of a handful of receptors that play important roles in mediating the beneficial effects of calorie restriction. Our findings could be used to take a rational approach to designing drugs that mimic beneficial aspects of calorie restriction,” said Harihara M. Mehendale, PhD, senior author and professor and Kitty DeGree Endowed Chair in Toxicology at the University of Louisiana at Monroe.

“Mimetics of Calorie Restriction Include Agonists of Lipid-activated Nuclear Receptors” was written by J. Christopher Corton, Udayan Apte, Steven P. Anderson, Pallavi Limaye, Lawrence Yoon, John Latendresse, Corrie Dunn, Jeffrey I. Everitt, Kenneth A. Voss, Cynthia Swanson, Carie Kimbrough, Jean S. Wong, Sarjeet S. Gill, Roshantha A. S. Chandraratna, Mi-Kyoung Kwak, Thomas W. Kensler, Thomas M. Stulnig, Knut R. Steffensen, Jan-Ake Gustafsson and Harihara M. Mehendale.

The study was supported by grants from the National Institute of Environmental Health Sciences, Louisiana Board of Regents Support fund, Marie Curie Fellowship of the European Community program Human Potential, Swedish Science Council and KaroBio.

Kenna L. Lowe | EurekAlert!
Further information:
http://www.jhsph.edu

More articles from Life Sciences:

nachricht Zebrafish's near 360 degree UV-vision knocks stripes off Google Street View
22.06.2018 | University of Sussex

nachricht New cellular pathway helps explain how inflammation leads to artery disease
22.06.2018 | Cedars-Sinai Medical Center

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Temperature-controlled fiber-optic light source with liquid core

In a recent publication in the renowned journal Optica, scientists of Leibniz-Institute of Photonic Technology (Leibniz IPHT) in Jena showed that they can accurately control the optical properties of liquid-core fiber lasers and therefore their spectral band width by temperature and pressure tuning.

Already last year, the researchers provided experimental proof of a new dynamic of hybrid solitons– temporally and spectrally stationary light waves resulting...

Im Focus: Overdosing on Calcium

Nano crystals impact stem cell fate during bone formation

Scientists from the University of Freiburg and the University of Basel identified a master regulator for bone regeneration. Prasad Shastri, Professor of...

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

Graphene assembled film shows higher thermal conductivity than graphite film

22.06.2018 | Materials Sciences

Fast rising bedrock below West Antarctica reveals an extremely fluid Earth mantle

22.06.2018 | Earth Sciences

Zebrafish's near 360 degree UV-vision knocks stripes off Google Street View

22.06.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>