Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Sex Pheromone Blocked in Bug

10.08.2004


Male scarab beetles use their antennae to follow a female’s scent. (Walter Leal/UC Davis photo)


Science can put a dent in the sex life of a scarab beetle by blocking its ability to pick up female scent, according to Walter Leal, professor of entomology at UC Davis. The research could eventually lead to methods to control insect pests without affecting harmless or beneficial insects.

"Chemical communication is the prime means of communication in insects," Leal said. If those communications can be controlled in the environment, insect pests could be prevented from breeding, he said.

Female pale-brown chaffers, a scarab beetle that is an agricultural pest in Japan, release a chemical signal or pheromone to attract males.



Insects smell through their antennae. Inside the antennae, pheromone molecules hit a specific switch that sends a nerve signal to the insect’s brain. Before the switch can fire again, it must be reset by removing the pheromone, like a wine-taster rinsing her palate.

As they fly toward the female, the male beetles come across wafts of pheromone separated by periods of no scent. To get an accurate reading and stay on course, the beetle must constantly reset its pheromone detection system.

Leal worked with Martine Maibeche-Coisne and Emmanuelle Jacquin-Joly at the Institut National de la Recherche Agronomique in Paris, France; Alexander Nikonov at the National Institute of Agrobiological Sciences in Tsukuba, Japan; and Yuko Ishida at UC Davis. They identified an enzyme called CYP4AW1, expressed in the antennae, that breaks down the pheromone.

When beetles were exposed to both pheromone and metyrapone, a chemical that specifically blocks the enzyme, they could smell the pheromone at first but then could not reset their antennae. They were unable to smell new doses pheromone for several minutes.

The treatment had no effect on other insects, because the enzyme is very specific to that pheromone, Leal said.

The same principles could be applied to agricultural pests and to disease-carrying mosquitoes, he said. For example, female mosquitoes find hosts by smell and use pheromones to guide other females to good egg-laying sites.

The work was published July 26 in the Proceedings of the National Academy of Sciences of the USA online.

Andy Fell | EurekAlert!
Further information:
http://www.ucdavis.edu

More articles from Life Sciences:

nachricht Nanocages in the lab and in the computer: how DNA-based dendrimers transport nanoparticles
19.10.2018 | University of Vienna

nachricht Less animal experiments on the horizon: Multi-organ chip awarded
19.10.2018 | Fraunhofer-Institut für Werkstoff- und Strahltechnik IWS

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Goodbye, silicon? On the way to new electronic materials with metal-organic networks

Scientists at the Max Planck Institute for Polymer Research (MPI-P) in Mainz (Germany) together with scientists from Dresden, Leipzig, Sofia (Bulgaria) and Madrid (Spain) have now developed and characterized a novel, metal-organic material which displays electrical properties mimicking those of highly crystalline silicon. The material which can easily be fabricated at room temperature could serve as a replacement for expensive conventional inorganic materials used in optoelectronics.

Silicon, a so called semiconductor, is currently widely employed for the development of components such as solar cells, LEDs or computer chips. High purity...

Im Focus: Storage & Transport of highly volatile Gases made safer & cheaper by the use of “Kinetic Trapping"

Augsburg chemists present a new technology for compressing, storing and transporting highly volatile gases in porous frameworks/New prospects for gas-powered vehicles

Storage of highly volatile gases has always been a major technological challenge, not least for use in the automotive sector, for, for example, methane or...

Im Focus: Disrupting crystalline order to restore superfluidity

When we put water in a freezer, water molecules crystallize and form ice. This change from one phase of matter to another is called a phase transition. While this transition, and countless others that occur in nature, typically takes place at the same fixed conditions, such as the freezing point, one can ask how it can be influenced in a controlled way.

We are all familiar with such control of the freezing transition, as it is an essential ingredient in the art of making a sorbet or a slushy. To make a cold...

Im Focus: Micro energy harvesters for the Internet of Things

Fraunhofer IWS Dresden scientists print electronic layers with polymer ink

Thin organic layers provide machines and equipment with new functions. They enable, for example, tiny energy recuperators. In future, these will be installed...

Im Focus: Dynamik einzelner Proteine

Neue Messmethode erlaubt es Forschenden, die Bewegung von Molekülen lange und genau zu verfolgen

Das Zusammenspiel aus Struktur und Dynamik bestimmt die Funktion von Proteinen, den molekularen Werkzeugen der Zelle. Durch Fortschritte in der...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Conference to pave the way for new therapies

17.10.2018 | Event News

Berlin5GWeek: Private industrial networks and temporary 5G connectivity islands

16.10.2018 | Event News

5th International Conference on Cellular Materials (CellMAT), Scientific Programme online

02.10.2018 | Event News

 
Latest News

Nanocages in the lab and in the computer: how DNA-based dendrimers transport nanoparticles

19.10.2018 | Life Sciences

Thin films from Braunschweig on the way to Mercury

19.10.2018 | Physics and Astronomy

App-App-Hooray! - Innovative Kits for AR Applications

19.10.2018 | Trade Fair News

VideoLinks
Science & Research
Overview of more VideoLinks >>>