Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Effects of Huntington’s Disease Mutation More Complex than Supposed

26.07.2004


Competing theories about why brain cells die in Huntington’s disease may not be competitors after all, according to a report published July 23, 2004, in the early online edition of the Annals of Neurology.



Researchers report finding minor molecular abnormalities of the sort proposed by these different theories in cells throughout the brain and even in the skin. Yet only select groups of cells in a few movement centers of the brain are so vulnerable to these disruptions that they degenerate and die.

The results suggest that therapeutic strategies for Huntington’s--as well as other neurodegenerative diseases such as Alzheimer’s and Parkinson’s--may have to be more complex than previously supposed.


Huntington’s is an inherited, degenerative brain disease marked by movement abnormalities--involuntary, dance-like movements called "chorea" early in the illness and later a gradual loss of the ability to move muscles voluntarily--as well as psychiatric symptoms such as depression and mood swings.

Huntington’s disease is caused by mutations in a single gene. The mutation leads to an abnormal form of the protein called huntingtin, which accumulates into toxic deposits inside nerve cells. Researchers have focused their efforts on understanding why mutant huntingtin accumulates and how it might damage brain cells.

One prominent theory notes that there is a breakdown in the clearance of abnormal proteins in Huntington’s disease. Normally, a cellular ’garbage’ service called the ubiquitin-protesome system (UPS) tags defective proteins and disassembles them. In Huntington’s disease, the UPS does not appear to be fully functional, leaving defective proteins like huntingtin to accumulate.

However, researchers have also found other critical defects in the brain cells of Huntington’s patients, including a scarcity of molecules called neurotrophins that nourish brain cells, and problems with mitochondria, the "power plants" that produce energy for cells.

In their study, Ole Isacson, MD, and his colleagues at Harvard University and McLean Hospital explored the relationships between these different cellular processes in different cells inside and outside the brain.

Surprisingly, first author Hyemyung Seo, PhD, and colleagues found that the UPS is not working properly in the skin cells of Huntington’s disease either, yet there is no evidence that this harms the cells. Similarly, the researchers found abnormalities in neurotrophins and mitochondrial operation in many unaffected areas of the brain in Huntington’s disease.

"It appears that only a few select groups of cells in the brain fail to adapt to this combination of problems. The degeneration of these cells leads to Huntington’s disease," said Isacson.

An important implication of the study is that the mutant huntingtin protein does not just have one negative effect on brain cells, but several. This may mean that therapeutic strategies will have to take the form of combinations of drugs that address the different processes.

Mark Cookson, Ph.D, an expert on neurodegenerative disease at the National Institute on Aging in Bethesda, Maryland, believes this study will be of great interest to scientists who study diseases like Alzheimer’s and Parkinson’s, which also feature accumulations of abnormal proteins, problems in UPS ’garbage collection,’ and the death of only certain vulnerable subgroups of cells.

"An obvious follow-up is to look at other neurodegenerative diseases. Presumably, there would be a pattern of cellular deficits parallel to, but distinct from those of Huntington’s disease," said Cookson.

| newswise
Further information:
http://www.aneuroa.org

More articles from Life Sciences:

nachricht Climate Impact Research in Hannover: Small Plants against Large Waves
17.08.2018 | Leibniz Universität Hannover

nachricht First transcription atlas of all wheat genes expands prospects for research and cultivation
17.08.2018 | Leibniz-Institut für Pflanzengenetik und Kulturpflanzenforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

 
Latest News

Smallest transistor worldwide switches current with a single atom in solid electrolyte

17.08.2018 | Physics and Astronomy

Robots as Tools and Partners in Rehabilitation

17.08.2018 | Information Technology

Climate Impact Research in Hannover: Small Plants against Large Waves

17.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>