Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Making Blind Zebrafish See

01.07.2004


Scientists in the Conway Institute of Biomolecular & Biomedical Research have restored the sight of blind zebrafish whose eyes failed to develop due to a genetic mutation. The findings, published this week in Developmental Biology, are exciting first steps on a long road to understanding eye diseases in humans.



Dr. Breandan Kennedy and his colleagues at the University of Washington, Seattle and the Hubrecht Laboratory in Utrecht, Netherlands first identified a family of eyeless fish. They then discovered the gene that controls initial development of eye tissue (retinal homeobox 3 or rx3) and that mutations in this gene resulted in the eyeless fish.

When Dr. Kennedy and his research team introduced a normal copy of the rx3 gene into fish embryos that had inherited the mutated version of the gene, they discovered that this treatment restored normal eye development. Recent studies from researchers in the Unites States have shown that mutations in the human form of this gene cause anophthalmia, a disease in which eyes also fail to form.


Commenting on the findings, Dr. Kennedy said, “the sequencing of the human genome has given us the blueprint of life. However, we now need to determine the role of each of the ~30,000 genes in the genome, and their links to disease. Zebrafish provide an excellent system for this goal, as they are particularly suited to genetic studies and because many genes perform the same task in zebrafish and humans.”

This is the first publication from the largest Irish facility for the study of zebrafish, which was established last year after the opening of the Conway Institute in University College Dublin. These tiny, freshwater fish have many genetic traits that are similar to humans due to the fact that they also possess a backbone. This makes them ideal models for the study of inherited human diseases.

Elaine Quinn | alfa
Further information:
http://www.ucd.ie
http://dx.doi.org/10.1016/j.ydbio.2004.02.026

More articles from Life Sciences:

nachricht Nanocages in the lab and in the computer: how DNA-based dendrimers transport nanoparticles
19.10.2018 | University of Vienna

nachricht Less animal experiments on the horizon: Multi-organ chip awarded
19.10.2018 | Fraunhofer-Institut für Werkstoff- und Strahltechnik IWS

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Goodbye, silicon? On the way to new electronic materials with metal-organic networks

Scientists at the Max Planck Institute for Polymer Research (MPI-P) in Mainz (Germany) together with scientists from Dresden, Leipzig, Sofia (Bulgaria) and Madrid (Spain) have now developed and characterized a novel, metal-organic material which displays electrical properties mimicking those of highly crystalline silicon. The material which can easily be fabricated at room temperature could serve as a replacement for expensive conventional inorganic materials used in optoelectronics.

Silicon, a so called semiconductor, is currently widely employed for the development of components such as solar cells, LEDs or computer chips. High purity...

Im Focus: Storage & Transport of highly volatile Gases made safer & cheaper by the use of “Kinetic Trapping"

Augsburg chemists present a new technology for compressing, storing and transporting highly volatile gases in porous frameworks/New prospects for gas-powered vehicles

Storage of highly volatile gases has always been a major technological challenge, not least for use in the automotive sector, for, for example, methane or...

Im Focus: Disrupting crystalline order to restore superfluidity

When we put water in a freezer, water molecules crystallize and form ice. This change from one phase of matter to another is called a phase transition. While this transition, and countless others that occur in nature, typically takes place at the same fixed conditions, such as the freezing point, one can ask how it can be influenced in a controlled way.

We are all familiar with such control of the freezing transition, as it is an essential ingredient in the art of making a sorbet or a slushy. To make a cold...

Im Focus: Micro energy harvesters for the Internet of Things

Fraunhofer IWS Dresden scientists print electronic layers with polymer ink

Thin organic layers provide machines and equipment with new functions. They enable, for example, tiny energy recuperators. In future, these will be installed...

Im Focus: Dynamik einzelner Proteine

Neue Messmethode erlaubt es Forschenden, die Bewegung von Molekülen lange und genau zu verfolgen

Das Zusammenspiel aus Struktur und Dynamik bestimmt die Funktion von Proteinen, den molekularen Werkzeugen der Zelle. Durch Fortschritte in der...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Conference to pave the way for new therapies

17.10.2018 | Event News

Berlin5GWeek: Private industrial networks and temporary 5G connectivity islands

16.10.2018 | Event News

5th International Conference on Cellular Materials (CellMAT), Scientific Programme online

02.10.2018 | Event News

 
Latest News

Nanocages in the lab and in the computer: how DNA-based dendrimers transport nanoparticles

19.10.2018 | Life Sciences

Thin films from Braunschweig on the way to Mercury

19.10.2018 | Physics and Astronomy

App-App-Hooray! - Innovative Kits for AR Applications

19.10.2018 | Trade Fair News

VideoLinks
Science & Research
Overview of more VideoLinks >>>