Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Espionage May Have Driven The Evolution Of Bee Language According To UCSD-Led Study In Brazil

16.06.2004


Close-up of aggressive stingless bee
Photo Credit: James Nieh, UCSD


Aggressive stingless bee attacking an Africanized honeybee (a "killer" bee)
Photo Credit: James Nieh, UCSD


A discovery by a University of California, San Diego biologist that some species of bees exploit chemical clues left by other bee species to guide their kin to food provides evidence that eavesdropping may be an evolutionary driving force behind some bees’ ability to conceal communication inside the hive, using a form of animal language to encode food location.

Bees can use two main forms of communication to tell their hive mates where to find food: abstract representations such as sounds or dances within the hive or scent markings outside the hive to mark the food and/or the route to it. In 1999, James Nieh, an assistant professor of biology at UCSD, published a paper in which he hypothesized communication within the hive may have evolved as a way of avoiding espionage by competitors.

Nieh’s most recent study, a collaboration with Brazilian biologists published June 16 in the early on-line version of the journal Proceedings of the Royal Society, is strong support for that hypothesis because it shows that bees can indeed use the chemical markings deposited by bees of other species to home in on and take over their food source. The paper will appear in print in Proceedings of the Royal Society in August.



“We show that foragers of an aggressive species searching for an unscented food source at a new location, detected and preferentially oriented to odor marks deposited by a competitor and then rapidly dominated the food source, killing or driving off all of the competitors within ten minutes,” says Nieh. “The ability of foragers to communicate food location within the confines of the hive, where other bees cannot eavesdrop, would be a clear evolutionary advantage where floral resources are seasonally scarce.”

Nieh along with Felipe Contrera and Vera Imperatriz-Fonseca from the University of São Paulo, Brazil and Lillian Barreto from Agricultural Development Agency of the the State of Bahia, Brazil studied interactions between two species of bees, Trigona spinipes and Melipona rufiventris. Both species are stingless bees, a diverse group prevalent in South and Central America. Because Trigona spinipes is a highly aggressive species, the researchers hypothesized that if these bees could use olfactory eavesdropping they would be able to gain control of a food source that competitors had discovered and identified with scent markings.

“These bees (Trigona spinipes) are so aggressive that they attack Africanized honey bees—popularly known as killer bees—and even attack several species of birds, driving them off flowers,” says Nieh. “In our study, we observed that when they took over the food source from the victim species (Melipona rufiventris) they used a range of forms of aggression from threats to intense grappling followed by decapitation.”

In their experiments, the researchers trained bees of each species to feed at separate dishes of unscented sugar water more than 100 yards away from each other. On discs of paper, the researchers collected scent markings from bees of each species as they were feeding. Scent markings are glandular secretions from bees’ heads or other body parts that many bee species use to indicate a food source. The researchers then covered the original feeder of either the aggressor or victim species and put out dummy feeders at a new location with paper marked by bees of their own species, paper marked by the other species, or unmarked paper. Bees of both species were able to distinguish their kin’s odor marks from the marks of the other species.

“The victim species preferred their own odor marks and avoided those of the aggressor species, but bees of the aggressor species, when searching for a new food source, preferred the odor marks of the victim species to their own odor marks or no odor marks,” says Nieh.

In their paper, the researchers point out that the bees’ responses are adaptive in both cases. The victim species avoids attack by avoiding resources marked by the aggressor species. On the other hand, exploiting the discoveries of other species provides the aggressor species with a steady means to find new rich food sources.

Bees are among a very limited number of species, besides humans, able to abstractly encode information about the physical world into signals understood by receivers. While scientists do not know what kind of communication the two species of bees employ within their hives, Nieh says his team’s finding that they are able to spy on each other’s olfactory markings sheds light on the long-standing mystery of why some other stingless bees and honeybees evolved one of the most sophisticated forms of animal language, strategies that would allow them to inform their kin about distance and direction to a food source while inside the hive.

Funding for this research was provided by the National Science Foundation, the University of California Academic Senate and the Heiligenberg Chair Endowment at UCSD.

Sherry Seethaler | UCSD
Further information:
http://ucsdnews.ucsd.edu/newsrel/science/sbeespy.asp

More articles from Life Sciences:

nachricht How to construct a protein factory
19.09.2019 | Universität Bern

nachricht Quality Control in Cells
19.09.2019 | Universität Heidelberg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Stevens team closes in on 'holy grail' of room temperature quantum computing chips

Photons interact on chip-based system with unprecedented efficiency

To process information, photons must interact. However, these tiny packets of light want nothing to do with each other, each passing by without altering the...

Im Focus: Happy hour for time-resolved crystallography

Researchers from the Department of Atomically Resolved Dynamics of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg, the University of Hamburg and the European Molecular Biology Laboratory (EMBL) outstation in the city have developed a new method to watch biomolecules at work. This method dramatically simplifies starting enzymatic reactions by mixing a cocktail of small amounts of liquids with protein crystals. Determination of the protein structures at different times after mixing can be assembled into a time-lapse sequence that shows the molecular foundations of biology.

The functions of biomolecules are determined by their motions and structural changes. Yet it is a formidable challenge to understand these dynamic motions.

Im Focus: Modular OLED light strips

At the International Symposium on Automotive Lighting 2019 (ISAL) in Darmstadt from September 23 to 25, 2019, the Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP, a provider of research and development services in the field of organic electronics, will present OLED light strips of any length with additional functionalities for the first time at booth no. 37.

Almost everyone is familiar with light strips for interior design. LED strips are available by the metre in DIY stores around the corner and are just as often...

Im Focus: Tomorrow´s coolants of choice

Scientists assess the potential of magnetic-cooling materials

Later during this century, around 2060, a paradigm shift in global energy consumption is expected: we will spend more energy for cooling than for heating....

Im Focus: The working of a molecular string phone

Researchers from the Department of Atomically Resolved Dynamics of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg, the University of Potsdam (both in Germany) and the University of Toronto (Canada) have pieced together a detailed time-lapse movie revealing all the major steps during the catalytic cycle of an enzyme. Surprisingly, the communication between the protein units is accomplished via a water-network akin to a string telephone. This communication is aligned with a ‘breathing’ motion, that is the expansion and contraction of the protein.

This time-lapse sequence of structures reveals dynamic motions as a fundamental element in the molecular foundations of biology.

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Optical Technologies: International Symposium „Future Optics“ in Hannover

19.09.2019 | Event News

Society 5.0: putting humans at the heart of digitalisation

10.09.2019 | Event News

Interspeech 2019 conference: Alexa and Siri in Graz

04.09.2019 | Event News

 
Latest News

DGIST achieves the highest efficiency of flexible CZTSSe thin-film solar cell

19.09.2019 | Power and Electrical Engineering

NTU Singapore scientists develop technique to observe radiation damage over femtoseconds

19.09.2019 | Physics and Astronomy

Optical Technologies: International Symposium „Future Optics“ in Hannover

19.09.2019 | Event News

VideoLinks
Science & Research
Overview of more VideoLinks >>>