Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

McGill Scientists publish detailed picture of how nutrients and other molecules get into cells

10.03.2004


Scientists at the Montreal Neurological Institute and the Montreal Proteomics Network at McGill University have published the most complete picture to date of the components of the molecular machinery that controls the entry of nutrients and other molecules into cells. In a study published in the Proceedings of the National Academy of Sciences of the USA (PNAS), Dr. Peter McPherson and colleagues used proteomics, the large-scale study of proteins, to identify the protein complement of clathrin-coated vesicles. These vesicles are the vehicles by which cells are able to take up nutrients, such as cholesterol, from their environment. Defects in this uptake process have profound repercussions on cellular function and human health. For example, genetic diseases that lead to deficiencies in cholesterol uptake cause elevations in plasma cholesterol levels and early-onset coronary atherosclerosis. In the brain, problems in the uptake process involving clathrin-coated vesicles can disrupt the transmission of signals between nerve cells. This can lead to a number of disorders including defects in the ability to form new memories.

“Proteins are the workhorses in our cells,” explained Dr. McPherson, Associate Professor of Neurology and Neurosurgery, and Anatomy and Cell Biology at the Montreal Neurological Institute (MNI) at McGill University. “Increasingly, we are learning that proteins don’t work in isolation, but function in large arrays that form protein machines. Proteomics is exciting because it allows us to breakdown this complex machine into its component parts. We can then figure out how it is assembled, how the proteins interact with one another, and what goes wrong in disease.

“The study from Dr. McPherson and his colleagues is fundamental to our understanding of the cellular uptake process because it provides a comprehensive molecular inventory of the clathrin-coated vesicle. Its results have broad implications for a variety of fields in biology and medicine,” said Dr. Pietro De Camilli, Professor of Cell Biology, Yale University School of Medicine and Investigator, Howard Hughes Medical Institute.



Dr. McPherson together with postdoctoral fellow, Dr. François Blondeau and other colleagues identified 209 proteins. “About half of the proteins we identified are already known to be associated with clathrin-coated vesicles, validating our approach,” said Dr. Blondeau. “The rest are novel proteins or proteins with known function that were not previously known to be involved in this process. This identification allows us to hypothesize on how these proteins function in this essential activity of the cells.”

“Dr. McPherson’s work is a great example of the unique “Cell Map” approach that the Montreal Proteomics Network has taken to perform proteomics experimentation”, said Dr. John Bergeron, Director of the Montreal Proteomics Network. “This work allows us to build a map of the location and function of the proteins in the cell, creating a picture of interacting complexes and networks. Ultimately this map will provide a guide to understanding a large number of human diseases.”

In June 2000 researchers announced the first draft version of the human genome sequence. This was important because it spelled out all of the genes that define humans and gave the instructions for making the proteins. Proteins do the functional work in the cell and are much more complex than DNA. The roughly 30,000 human genes lead to more than three hundred thousand different proteins. The ability to rapidly and globally detect proteins represents the next step in biology. Revolutions in technology of mass spectrometry which were honoured by the 2002 Nobel Prize for chemistry, have paved the way for proteomics.

This research was supported by the Canadian Institutes of Health Research (CIHR), Valorisation Recherche Quebec, Genome Quebec (Montreal Proteomics Network) and Genome Canada and the Canada Foundation for Innovation.

Sandra McPherson | McGill University
Further information:
http://www.mni.mcgill.ca/announce/mcphersonpnas_e.htm
http://www.pnas.org/cgi/reprint/0308186101v1.pdf

More articles from Life Sciences:

nachricht A novel synthetic antibody enables conditional “protein knockdown” in vertebrates
20.08.2018 | Technische Universität Dresden

nachricht Climate Impact Research in Hannover: Small Plants against Large Waves
17.08.2018 | Leibniz Universität Hannover

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: It’s All in the Mix: Jülich Researchers are Developing Fast-Charging Solid-State Batteries

There are currently great hopes for solid-state batteries. They contain no liquid parts that could leak or catch fire. For this reason, they do not require cooling and are considered to be much safer, more reliable, and longer lasting than traditional lithium-ion batteries. Jülich scientists have now introduced a new concept that allows currents up to ten times greater during charging and discharging than previously described in the literature. The improvement was achieved by a “clever” choice of materials with a focus on consistently good compatibility. All components were made from phosphate compounds, which are well matched both chemically and mechanically.

The low current is considered one of the biggest hurdles in the development of solid-state batteries. It is the reason why the batteries take a relatively long...

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

 
Latest News

Quantum bugs, meet your new swatter

20.08.2018 | Information Technology

A novel synthetic antibody enables conditional “protein knockdown” in vertebrates

20.08.2018 | Life Sciences

Metamolds: Molding a mold

20.08.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>