Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers map ’super-tree’ of flowering plants, solving Darwin’s "abominable mystery"

26.02.2004


The secret of how flowering plants evolved into one of the Earth’s most dominant and diverse groups of organisms is revealed in study led by researchers from the Royal Botanic Gardens, Kew and Imperial College London.

Described by Charles Darwin as an "abominable mystery", the team publish the first complete evolutionary ’super-tree’ of relationships among all families of flowering plants in current edition of the Proceedings of the National Academy of Science.

Using a combination of DNA sequence data and statistical techniques for analysing biodiversity, the team concludes that Darwin’s suspicion that there is not a simple explanation for the large biodiversity of flowering plants was correct.



Dr Tim Barraclough of Imperial’s Department of Biological Sciences and the Royal Botanic Gardens, Kew, says:

"The idea that key evolutionary innovations drive an organism’s ability to diversify has been popular with evolutionary biologists for the past 10 years or so. But there’s a growing consensus that pinning the success of any group on a single innovation, such as insect fertilisation in the case of flowering plants, is too simplistic."

"Instead, the diversity of flowering plant families is the result of interaction between existing biological traits and the environment in which the plant grows. Effectively biodiversity depends on being the right plant in the right place at the right time."

"For example, grasses appear to be very successful because they have a suite of traits that allows them to thrive in cooler and drier environments. Their form of growth also makes them resistant to fire. But the same traits would not confer abundance and diversity in warmer, wetter environments."

In a letter to Joseph Hooker, Kew’s first Director, in 1879, Darwin outlined his "abominable mystery" of flowering plants’ rapid diversification. Darwin described his own efforts to identify a single cause as "wretchedly poor".

Subsequent attempts to understand this diversity have been revolutionized by the recent advent of molecular phylogenetics, which uses DNA sequence analysis to map evolutionary relationships. Using this technique, the team were able to compile the wealth of data from over 40 previous large-scale DNA studies on flowering plants into one super-tree.

"Even a decade ago, researchers said it was impossible to build a complete tree of flowering plant families. But recent advances in molecular phylogenetics have heralded a new era in analysing biodiversity," explains Dr Vincent Savolainen of the Royal Botanic Gardens, Kew.

"Our examination of the top 10 major shifts in diversification, which include the grass family and the pea family, indicates they cannot easily be attributed to the action of a few key innovations."

Dr Savolainen added: "The new super-tree will be a unique resource for future studies on plant diversity, ranging from biodiversity, gene evolution and ecological studies. It represents a major step towards the ’Tree of Life’, an international effort to recover the evolutionary relationships of all 1.5 million known species on Earth."

Dr Tim Barraclough and Professor Mark Chase are Royal Society University Research Fellows.

Hannah Rogers | Imperial College London
Further information:
http://www.imperial.ac.uk/P4929.htm
http://tolweb.org/tree/

More articles from Life Sciences:

nachricht The hidden structure of the periodic system
17.06.2019 | Max-Planck-Institut für Mathematik in den Naturwissenschaften (MPIMIS)

nachricht Tiny probe that senses deep in the lung set to shed light on disease
17.06.2019 | University of Edinburgh

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The hidden structure of the periodic system

The well-known representation of chemical elements is just one example of how objects can be arranged and classified

The periodic table of elements that most chemistry books depict is only one special case. This tabular overview of the chemical elements, which goes back to...

Im Focus: MPSD team discovers light-induced ferroelectricity in strontium titanate

Light can be used not only to measure materials’ properties, but also to change them. Especially interesting are those cases in which the function of a material can be modified, such as its ability to conduct electricity or to store information in its magnetic state. A team led by Andrea Cavalleri from the Max Planck Institute for the Structure and Dynamics of Matter in Hamburg used terahertz frequency light pulses to transform a non-ferroelectric material into a ferroelectric one.

Ferroelectricity is a state in which the constituent lattice “looks” in one specific direction, forming a macroscopic electrical polarisation. The ability to...

Im Focus: Determining the Earth’s gravity field more accurately than ever before

Researchers at TU Graz calculate the most accurate gravity field determination of the Earth using 1.16 billion satellite measurements. This yields valuable knowledge for climate research.

The Earth’s gravity fluctuates from place to place. Geodesists use this phenomenon to observe geodynamic and climatological processes. Using...

Im Focus: Tube anemone has the largest animal mitochondrial genome ever sequenced

Discovery by Brazilian and US researchers could change the classification of two species, which appear more akin to jellyfish than was thought.

The tube anemone Isarachnanthus nocturnus is only 15 cm long but has the largest mitochondrial genome of any animal sequenced to date, with 80,923 base pairs....

Im Focus: Tiny light box opens new doors into the nanoworld

Researchers at Chalmers University of Technology, Sweden, have discovered a completely new way of capturing, amplifying and linking light to matter at the nanolevel. Using a tiny box, built from stacked atomically thin material, they have succeeded in creating a type of feedback loop in which light and matter become one. The discovery, which was recently published in Nature Nanotechnology, opens up new possibilities in the world of nanophotonics.

Photonics is concerned with various means of using light. Fibre-optic communication is an example of photonics, as is the technology behind photodetectors and...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

SEMANTiCS 2019 brings together industry leaders and data scientists in Karlsruhe

29.04.2019 | Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

First dust conference in the Central Asian part of the earth’s dust belt

15.04.2019 | Event News

 
Latest News

Novel communications architecture for future ultra-high speed wireless networks

17.06.2019 | Information Technology

Climate Change in West Africa

17.06.2019 | Earth Sciences

Robotic fish to replace animal testing

17.06.2019 | Ecology, The Environment and Conservation

VideoLinks
Science & Research
Overview of more VideoLinks >>>