Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists Discover That Enzyme Degrades Mad Cow Disease Prion

06.01.2004


Research by North Carolina State University scientists, in conjunction with scientists from the Netherlands and BioResource International, an NC State spin-off biotechnology company, has shown that, under proper conditions, an enzyme can fully degrade the prion – or protein particle – believed to be responsible for mad cow disease and other related animal and human diseases.



These transmissible prions – believed to be the cause of bovine spongiform encephalopathy (BSE), the technical name for mad cow disease, as well as the human and sheep versions, called Creutzfeldt-Jakob disease and scrapie, respectively – are highly resistant to degradation, says Dr. Jason Shih, professor of biotechnology and poultry science at NC State. But the new research, which tested the effects of a bacterial enzyme keratinase on brain tissues from cows with BSE and sheep with scrapie, showed that, when the tissue was pretreated and in the presence of a detergent, the enzyme fully degraded the prion, rendering it undetectable.

The research was published in the Dec. 1 edition of The Journal of Infectious Diseases.


Shih’s colleagues in the research study included first author Jan Langeveld, Dick Van de Wiel, Jan Garssen and Alex Bossers from the Central Institute for Animal Disease Control in Lelystad, The Netherlands; and Giles Shih and Jeng-Jie Wang from BioResource International, which is located on NC State’s Centennial Campus.

The researchers now plan another study to test the effectiveness of the enzyme on the treated BSE prions in mice. The two-year study begins in January 2004 and is funded with $190,000 from the National Cattleman’s Beef Association.

“Our work has been done in vitro, or in test tubes, and we’ve reduced the prion to undetectable levels,” Jason Shih says. “Our work with mice will show whether these undetectable levels of prion are indeed non-infectious.”

Jason Shih will also test keratinase’s effectiveness in decontaminating equipment that processes animal by-products. Many scientists believe that mad cow disease is spread by healthy animals eating feed containing by-products from BSE-infected animals. Using keratinase to gobble up harmful prions on the processing equipment would go a long way in reducing the risk of spreading BSEs like mad cow disease, Shih believes.

This study to optimize the degradation process is funded for two years with $180,000 from the Food and Drug Administration. Shih says in lieu of using actual BSE materials, which are quite dangerous to work with, researchers will use a surrogate protein produced from yeast that has similar physical and chemical properties, but is non-pathogenic.

Shih hit upon the idea of using keratinase to degrade prions based on his more than two decades of work as a poultry scientist looking for ways to manage poultry waste. He discovered that a bacteria, Bacillus licheniformis strain PWD-1, could degrade chicken feathers. Shih isolated and characterized the bacterial enzyme keratinase, and then isolated and sequenced the gene that encodes keratinase. By fermentation technology, he was able to develop a way to produce mass quantities of the enzyme, and did studies that proved many valuable applications of the enzyme.

Shih found that keratinase can be added to chicken feed to increase digestibility and the efficiency of the feed; that is, chickens who eat feed with the enzyme grow to optimal weight quicker and need less feed to grow to that optimal weight. The enzyme thus can provide the same benefit in feed that antibiotics currently provide. Animal producers are looking for safer substitutes to antibiotics, and Shih believes that keratinase can serve that purpose.

Soon, it will become clear whether keratinase can also help prevent mad cow and other harmful diseases caused by prions.

Mick Kulikowski, | NC State University
Further information:
http://www.ncsu.edu/news/press_releases/04_01/001.htm

More articles from Life Sciences:

nachricht World’s Largest Study on Allergic Rhinitis Reveals new Risk Genes
17.07.2018 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Plant mothers talk to their embryos via the hormone auxin
17.07.2018 | Institute of Science and Technology Austria

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Microscopic trampoline may help create networks of quantum computers

17.07.2018 | Information Technology

In borophene, boundaries are no barrier

17.07.2018 | Materials Sciences

The role of Sodium for the Enhancement of Solar Cells

17.07.2018 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>