Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Endurance of plants under quartz rocks possible model for life on early Earth, Mars

06.01.2004


Microscopic Mojave Desert plants growing on the underside of translucent quartz pebbles can endure both chilly and near-boiling temperatures, scavenge nitrogen from the air, and utilize the equivalent of nighttime moonlight levels for photosynthesis, a new study reports. The plants, which receive enough light through the pebbles to support photosynthesis, could offer a model for how plants first colonized land, as well as how they might have evolved on Mars, said the scientists who performed the study.



"Here you have a really bizarre habitat," said William Schlesinger, dean of Duke University’s Nicholas School of the Environment and principal author of a paper on the study that appears in the December, 2003 issue of the research journal Ecology, which was just published. "When I first went to the site in 1978 I thought: ’That’s weird, how do these plants photosynthesize?’ Then it dawned on me that they photosynthesized on the light coming through the rocks."

Years after he first noticed the primitive plants -- mostly species of blue-green algae -- growing under every quartz pebble he turned over at the site in California’s Joshua Tree National Park, Schlesinger assembled a scientific team to investigate the phenomenon. He said what the scientists learned suggests a possible way that land plants established their first toehold in the harsh conditions of the early Earth: by staying under cover.


Such habitats may also be "prime locations to search for extraterrestrial life" on other planets, wrote Schlesinger and his other team members in their paper. Other authors include Schlesinger’s technician Jeffrey Pippen and Duke graduate students Matthew Wallenstein and Kirsten Hofmockel; also Bruce Mahall of the University of California at Santa Barbara and Debra Klepeis, Mahall’s graduate student.

Under Schlesinger’s direction, Pippen counted 295 whitish, light transmitting quartz pebbles commingled with a much larger number of opaque black pebbles within a 1–by-50 meter desert test plot. The scientists found all quartz pebbles that were about one inch or less thick supported active plant colonies on their undersides. Quartz pebbles thicker than one inch still had rings of plant life around those parts of their bottom edges where sunlight could penetrate through the stone at an oblique angle.

By placing heat sensors above and below some of the pebbles in all four seasons, the scientists documented that living under the quartz pebbles kept the plants warmer in winter and cooler in summer compared to conditions underneath black pebbles. In fact, their Ecology paper suggested that sunlight transmitted through the translucent quartz might "confer a modest greenhouse effect" during the cooler months, in essence trapping some of the sun’s heat.

Comparatively moderate though they were, temperatures underneath the quartz pebbles still logged as low at 41 degrees Fahrenheit in January and almost 150 degrees Fahrenheit at midday in August under harsh desert conditions.

The researchers then brought some pebble samples back to their laboratory at Duke and heated them to 194 degrees for six hours. Despite that ordeal in the lab, when the baked rocks were then moistened, their resident plant colonies proved still able to photosynthesize. Photosynthesis is the process by which plants synthesize sugars using atmospheric carbon dioxide through the action of light on green chlorophyll molecules.

The algae’s demonstration of high temperature resilience presented a paradox, because chlorophyll molecules themselves normally begin to degrade at about 167 degrees, according to Schlesinger, who is a biogeochemist and ecologist. "Either they have some special kind of chlorophyll, or they were in a resting phase which bacterial groups can go into to get through really extreme conditions," Schlesinger said. Blue- green algae are more properly called cyanobacteria.

Wallenstein’s DNA identification of the algae species in plant colony samples revealed 26 different kinds of cyanobacteria. Of those, the Ecology paper suggested that five species may be previously unknown to science.

Cyanobacteria are suspected of being "one of the first colonizers of land" on Earth, Schlesinger noted -- a time when there was no atmospheric ozone shield to block harmful solar ultraviolet radiation and no nitrogen-rich topsoil covering the ground. The lack of soil nitrogen provided no obstacle for the plant colonies living under the quartz rocks. Hofmockel, another of Schlesinger’s graduate students, found those algae obtain the nitrogen they needed for growth directly from the air like some less primitive plants are also able to do.

The UC Santa Barbara researchers found that the pebbles did not filter out more ultraviolet rays than they did other wavelengths of sunlight, meaning that quartz did not provide an especially protective environment. On the other hand, analysis also showed that that only about .08 percent of the light of any wavelength that entered one-inch-thick pebbles could reach plants on the other end. "That’s pretty shady," Schlesinger added. "That’s like photosythesizing by moonlight on the bottom of the thickest rocks."

"The growth of hypolithic (beneath rocks) algae under diaphanous quartz pebbles in the Mojave Desert is another illustration of the successful microbial exploitation of a novel habitat in an otherwise harsh environment," the authors concluded in their Ecology paper. "Similar environments might harbor life on other planets," the paper added.

While the paper did not specify which other planets, Schlesinger singled out Mars, whose surface is known to harbor quartz rock, be extremely dry and cold, and receive larger doses of ultraviolet radiation than Earth’s surface does today "Right now Mars doesn’t look too good for life," Schlesinger said. "But if Mars had something alive two billion years ago, when it is believed to have been slightly wetter, this might have been where that something lived."

Monte Basgall | EurekAlert!
Further information:
http://www.duke.edu/

More articles from Life Sciences:

nachricht Progress in Super-Resolution Microscopy
17.12.2018 | Julius-Maximilians-Universität Würzburg

nachricht Communication between neural networks
17.12.2018 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Data storage using individual molecules

Researchers from the University of Basel have reported a new method that allows the physical state of just a few atoms or molecules within a network to be controlled. It is based on the spontaneous self-organization of molecules into extensive networks with pores about one nanometer in size. In the journal ‘small’, the physicists reported on their investigations, which could be of particular importance for the development of new storage devices.

Around the world, researchers are attempting to shrink data storage devices to achieve as large a storage capacity in as small a space as possible. In almost...

Im Focus: Data use draining your battery? Tiny device to speed up memory while also saving power

The more objects we make "smart," from watches to entire buildings, the greater the need for these devices to store and retrieve massive amounts of data quickly without consuming too much power.

Millions of new memory cells could be part of a computer chip and provide that speed and energy savings, thanks to the discovery of a previously unobserved...

Im Focus: An energy-efficient way to stay warm: Sew high-tech heating patches to your clothes

Personal patches could reduce energy waste in buildings, Rutgers-led study says

What if, instead of turning up the thermostat, you could warm up with high-tech, flexible patches sewn into your clothes - while significantly reducing your...

Im Focus: Lethal combination: Drug cocktail turns off the juice to cancer cells

A widely used diabetes medication combined with an antihypertensive drug specifically inhibits tumor growth – this was discovered by researchers from the University of Basel’s Biozentrum two years ago. In a follow-up study, recently published in “Cell Reports”, the scientists report that this drug cocktail induces cancer cell death by switching off their energy supply.

The widely used anti-diabetes drug metformin not only reduces blood sugar but also has an anti-cancer effect. However, the metformin dose commonly used in the...

Im Focus: New Foldable Drone Flies through Narrow Holes in Rescue Missions

A research team from the University of Zurich has developed a new drone that can retract its propeller arms in flight and make itself small to fit through narrow gaps and holes. This is particularly useful when searching for victims of natural disasters.

Inspecting a damaged building after an earthquake or during a fire is exactly the kind of job that human rescuers would like drones to do for them. A flying...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

ICTM Conference 2019: Digitization emerges as an engineering trend for turbomachinery construction

12.12.2018 | Event News

New Plastics Economy Investor Forum - Meeting Point for Innovations

10.12.2018 | Event News

EGU 2019 meeting: Media registration now open

06.12.2018 | Event News

 
Latest News

When a fish becomes fluid

17.12.2018 | Studies and Analyses

Progress in Super-Resolution Microscopy

17.12.2018 | Life Sciences

How electric heating could save CO2 emissions

17.12.2018 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>