Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UT Southwestern researchers’ discovery may lead to gene targets for new form of contraceptive

02.12.2003


Deleting a particular ion channel from sperm cells causes those cells to lose the power needed for fertilization, researchers at UT Southwestern Medical Center at Dallas found while expanding studies into male infertility.



These findings, which could eventually lead to more effective forms of contraception, are currently available online and will appear in the Dec. 9 issue of the Proceedings of the National Academy of Sciences.

In studies on mice, disrupting a gene that contains a putative calcium-permeable ion channel – identified in earlier research as CatSper2 – did not change normal sperm cell production or basic sperm motility, or movement. It did, however, prevent the appearance of a stimulated form of sperm motility, called hyperactivation, normally seen near the time of fertilization. Sperm cells were, thus, incapable of generating the power needed to penetrate an egg cell’s extracellular matrix, or outer shell, which is necessary for fertilization.


"Basically this protein or ion channel plays a critical role in sperm cell hyperactivation, which is essential for fertilization," said Dr. Timothy Quill, first author of the study and an instructor of pharmacology and a researcher in the Cecil H. and Ida Green Center for Reproductive Biology Sciences. "The same protein exists in human sperm cells, so it is likely that disruption of CatSper2 would result in infertility in men as well. If a contraceptive drug could be designed that would bind to the protein and block its function, then those sperm cells would be rendered ineffective or infertile."

Such an ion channel-blocking contraceptive would likely be fast acting, Dr. Quill said. It also could have fewer side effects than other available contraceptives, as it would target a protein found only in sperm cells.

"Blocking the protein’s activity would not cause defects in the development of the sperm cell, but only prevent hyperactivation," he said. "This discovery could serve as one of the next steps in the process of creating a new type of contraceptive that would offer less risk and perform faster."

UT Southwestern researchers recently identified more than 350 genes that appear to be active in maturing sperm cells in mice. In a study published in the PNAS earlier this fall, researchers showed that, so far, 17 of those genes are necessary for normal male fertility. Because these genes appear to be active only in developing sperm, creating contraceptive drugs targeting these genes also could be a possibility.


Dr. David Garbers, director of the Green Center, a Howard Hughes Medical Institute investigator and senior author of both PNAS studies, is well-known for his investigations into how the egg and sperm communicate, research that led to his election to the National Academy of Sciences.

Other contributors to the most recent study, all from UT Southwestern, include Dr. Robert Hammer, professor of biochemistry and in the Green Center; Lynda Doolittle, research specialist for HHMI, and Sarah Sugden, research assistant in the Green Center.

The study was supported in part by the Howard Hughes Medical Institute and the National Institutes of Health.

To automatically receive news releases from UT Southwestern via e-mail, subscribe at http://www.utsouthwestern.edu/utsw/cda/dept37326/files/37813.html

Donna Steph Hansard | EurekAlert!
Further information:
http://www.utsouthwestern.edu
http://www.utsouthwestern.edu/utsw/cda/dept37326/files/37813.html

More articles from Life Sciences:

nachricht Barium ruthenate: A high-yield, easy-to-handle perovskite catalyst for the oxidation of sulfides
16.07.2018 | Tokyo Institute of Technology

nachricht The secret sulfate code that lets the bad Tau in
16.07.2018 | American Society for Biochemistry and Molecular Biology

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Subaru Telescope helps pinpoint origin of ultra-high energy neutrino

16.07.2018 | Physics and Astronomy

Barium ruthenate: A high-yield, easy-to-handle perovskite catalyst for the oxidation of sulfides

16.07.2018 | Life Sciences

New research calculates capacity of North American forests to sequester carbon

16.07.2018 | Earth Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>