Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Bird ’breathalyzer’ helps assess migratory diet

25.11.2003


While breathalyzers help police crack down on drunk driving, a similar new device is helping a University of Rhode Island graduate student analyze the dietary changes of migrating songbirds.



Just as human breathalyzers measure an individual’s blood-alcohol level, David Podlesak says that his bird breathalyzer measures the "carbon signature" of a bird’s last meal.

"We measure the ratio of the isotopes of carbon 12 to carbon 13, and this carbon signature in their breath can tell us what the bird ate earlier in the day," said the 36-year-old Wakefield resident who is nearing completion of his doctorate.


Podlesak is the first to adapt and use the bird breathalyzer on small songbirds and to verify that the measurements are accurate. The device was created recently by Kent Hatch at Brigham Young University for use with pigeons.

The birds breathe into a small mask connected to a balloon filled with pure oxygen. As the bird inhales the oxygen, it exhales carbon dioxide, replacing the oxygen in the balloon with carbon dioxide within one minute. The carbon dioxide is then analyzed for its carbon signature.

This carbon signature slowly makes its way from the bird’s breath to its blood and eventually into its feathers. Podlesak is the first to use carbon signatures in different tissues from the same bird to create a dietary timeline for migrating birds.

"The signature in the feather tells us what the bird ate on its breeding grounds a month or two ago; the signature in its red blood cells tells what it ate within the last two or three weeks; and the signature in its plasma indicates what it ate two or three days ago," Podlesak said. "If the signature is different between its feathers and its breath, that says that the bird ate something different or changed its diet and is using a different resource to fatten up on migration."

That’s an important distinction, according to Podlesak. "If birds are looking for different foods while they’re migrating -- maybe something that has more proteins or more fats -- then we need to make sure that those resources are available at popular migratory stopover sites."

Podlesak’s research is based on birds caught on Block Island, R.I., one of the major sites on the East Coast where birds stop to feed during their southward migration each fall. He captures yellow-rumped warblers, white-throated sparrows, ruby crowned kinglets, golden crowned kinglets and gray catbirds in nets, and takes breath, blood and feather samples before releasing the birds back into the wild.

His results so far have been insightful and have raised additional questions. Yellow rumped warblers, for instance, are known to primarily eat bayberry on migration. But in each of the last two years, Podlesak caught a number of warblers that ate something very different than was expected. He wonders if the birds stopped somewhere out of the ordinary or if there is an unknown migratory stopover site that provides the birds with an unusual diet.

Podlesak also discovered that some white-throated sparrows switched their diet during migration from insects and berries to corn, suggesting that the birds ate at bird feeders. This raises questions about the importance of feeders to the birds as they migrate. Podlesak hopes to answer questions about both species with additional research. Funding for his research comes from the National Science Foundation, the URI Agriculture Experiment Station, Sigma Xi, and The Nature Conservancy, which is protecting the coastal scrub habitat on Block Island where Podlesak conducts his field work.

Todd McLeish | EurekAlert!
Further information:
http://www.uri.edu/

More articles from Life Sciences:

nachricht Chip-based optical sensor detects cancer biomarker in urine
06.12.2019 | The Optical Society

nachricht Scientist identify new marker for insecticide resistance in malaria mosquitoes
06.12.2019 | Liverpool School of Tropical Medicine

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Developing a digital twin

University of Texas and MIT researchers create virtual UAVs that can predict vehicle health, enable autonomous decision-making

In the not too distant future, we can expect to see our skies filled with unmanned aerial vehicles (UAVs) delivering packages, maybe even people, from location...

Im Focus: The coldest reaction

With ultracold chemistry, researchers get a first look at exactly what happens during a chemical reaction

The coldest chemical reaction in the known universe took place in what appears to be a chaotic mess of lasers. The appearance deceives: Deep within that...

Im Focus: How do scars form? Fascia function as a repository of mobile scar tissue

Abnormal scarring is a serious threat resulting in non-healing chronic wounds or fibrosis. Scars form when fibroblasts, a type of cell of connective tissue, reach wounded skin and deposit plugs of extracellular matrix. Until today, the question about the exact anatomical origin of these fibroblasts has not been answered. In order to find potential ways of influencing the scarring process, the team of Dr. Yuval Rinkevich, Group Leader for Regenerative Biology at the Institute of Lung Biology and Disease at Helmholtz Zentrum München, aimed to finally find an answer. As it was already known that all scars derive from a fibroblast lineage expressing the Engrailed-1 gene - a lineage not only present in skin, but also in fascia - the researchers intentionally tried to understand whether or not fascia might be the origin of fibroblasts.

Fibroblasts kit - ready to heal wounds

Im Focus: McMaster researcher warns plastic pollution in Great Lakes growing concern to ecosystem

Research from a leading international expert on the health of the Great Lakes suggests that the growing intensity and scale of pollution from plastics poses serious risks to human health and will continue to have profound consequences on the ecosystem.

In an article published this month in the Journal of Waste Resources and Recycling, Gail Krantzberg, a professor in the Booth School of Engineering Practice...

Im Focus: Machine learning microscope adapts lighting to improve diagnosis

Prototype microscope teaches itself the best illumination settings for diagnosing malaria

Engineers at Duke University have developed a microscope that adapts its lighting angles, colors and patterns while teaching itself the optimal...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

The Future of Work

03.12.2019 | Event News

First International Conference on Agrophotovoltaics in August 2020

15.11.2019 | Event News

Laser Symposium on Electromobility in Aachen: trends for the mobility revolution

15.11.2019 | Event News

 
Latest News

Solving the mystery of carbon on ocean floor

06.12.2019 | Earth Sciences

Chip-based optical sensor detects cancer biomarker in urine

06.12.2019 | Life Sciences

A platform for stable quantum computing, a playground for exotic physics

06.12.2019 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>