Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Understanding How Lymph Nodes Respond to Infection May Redefine How Immune System Functions

20.11.2003


Duke University Medical Center researchers may have solved the mystery of why lymph nodes swell when the body fights infection. Their findings may redefine how the immune system functions, they said.

Their research, published in the December 2003 issue of Nature Immunology, centered on the role of mast cells. Mast cells are immune cells that are typically found just under the skin and in the lining of the intestine and lungs and were previously associated primarily with the induction of allergic reactions. The Duke researchers report that allergic reactions are only a side effect of mast cells’ much more important role as a regulator of the body’s immune system.

"Mast cells serve as the command post for the immune system during infections," said Soman Abraham, Ph.D., professor of pathology, associate professor of immunology and senior author of the paper. "White blood cells are sequestered within these nodes and, following proper activation, they can specifically target infectious agents and aid the host in clearing unwanted pathogens."



Abraham said the discovery that mast cells can initiate the activation and swelling of nodes through release of specific signaling molecules points to the possible use of mast cell products for the development of vaccines designed to boost the potency of the immune response.

"Mast cells have been much maligned because of their contribution to many diseases including asthma, arthritis, Crohn’s disease and multiple sclerosis," said Abraham. "Our research shows that mast cells play an important role in immune surveillance and defense against infectious agents."

The human immune system comprises two components that protect it against invading pathogens. The first line of defense is the innate immune system, a quick-acting response triggered immediately when a pathogen enters the body. The innate immune response responds the same regardless of the pathogen and attacks the pathogen for the first several days until the adaptive immune response can begin its attack.

The adaptive immune system is tailored specifically to the pathogen it is attacking. Once the immune system identifies an invader, draining lymph nodes recruit infection-fighting T-cells within 24 hours. During the next week or so, the T-cells proliferate and induce B-cells to produce antibodies specific to the invader. The result is swollen lymph nodes, which are the first discernable sign that the adaptive immune system is in effect.

Previous studies by Abraham showed that mast cells trigger the body’s innate immune system by releasing a molecule called tumor necrosis factor (TNF) and recruiting infection-clearing cells called neutrophils. However, the role of mast cells in the adaptive immune system remained unknown.

To examine the role of mast cells in the adaptive immune system, the Duke researchers studied the lymph nodes of mast cell-deficient mice. When the scientists introduced bacteria into the animals, their lymph nodes did not swell. However, when the mice were injected with mast cells, their nodes did swell. Further, specific activation of mast cells in the skin induced a rapid increase in TNF in the lymph nodes and recruitment of T cells.

"We are showing that the mast cells are critically involved in both the innate and adaptive immune systems," said Abraham. "Both are triggered with the release of TNF by the mast cells. The innate immune system, through TNF and neutrophils, attack the pathogen first, but within hours, TNF has reached the lymph nodes, triggering the adaptive immune system. Infection fighting T-cells are recruited and a specific attack on the pathogen begins. Within days, the body is producing antibodies and fighting back."

The involvement of mast cells in the adaptive response is a major shift in the understanding of the immune system and its function, said Salvatore Pizzo, M.D., Ph.D., chairman of the department of pathology and a member of the research team.

"When you pick up a textbook two years from now that shows how the immune system functions and the way a node responds to an infectious agent, you are going to see a whole new pathway," said Pizzo. "Mast cells are much more than just bad actors making you feel sick when you are exposed to noxious agents. They are actually major players helping you deal with these noxious agents."

"With a clearer understanding of the adaptive immune system and the role of mast cells, comes the opportunity for new therapeutics that could improve disease protection," said Abraham.

"It’s been known, particularly with allergy and asthma, that mast cells are involved in immune dysfunction," he said. "But their real physiological role is triggering both the innate and adaptive immune systems. Future research needs to focus on this role. We need to continue to dissect the process and adapt some of it to improve immunity and disease protection."

The National Institutes of Health and the Sandler Foundation for Asthma Research funded the research. Co-authors of the paper include James B. McLachlan; Justin P. Hart, Ph.D.; Christopher P. Shelburne, Ph.D.; Herman F. Staats, Ph.D.; and Michael D. Gunn, M.D., all of Duke University Medical Center.

Amy Austell | dukemed news
Further information:
http://dukemednews.org/news/article.php?id=7208

More articles from Life Sciences:

nachricht Solving the efficiency of Gram-negative bacteria
22.03.2019 | Harvard University

nachricht Bacteria bide their time when antibiotics attack
22.03.2019 | Rice University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The taming of the light screw

DESY and MPSD scientists create high-order harmonics from solids with controlled polarization states, taking advantage of both crystal symmetry and attosecond electronic dynamics. The newly demonstrated technique might find intriguing applications in petahertz electronics and for spectroscopic studies of novel quantum materials.

The nonlinear process of high-order harmonic generation (HHG) in gases is one of the cornerstones of attosecond science (an attosecond is a billionth of a...

Im Focus: Magnetic micro-boats

Nano- and microtechnology are promising candidates not only for medical applications such as drug delivery but also for the creation of little robots or flexible integrated sensors. Scientists from the Max Planck Institute for Polymer Research (MPI-P) have created magnetic microparticles, with a newly developed method, that could pave the way for building micro-motors or guiding drugs in the human body to a target, like a tumor. The preparation of such structures as well as their remote-control can be regulated using magnetic fields and therefore can find application in an array of domains.

The magnetic properties of a material control how this material responds to the presence of a magnetic field. Iron oxide is the main component of rust but also...

Im Focus: Self-healing coating made of corn starch makes small scratches disappear through heat

Due to the special arrangement of its molecules, a new coating made of corn starch is able to repair small scratches by itself through heat: The cross-linking via ring-shaped molecules makes the material mobile, so that it compensates for the scratches and these disappear again.

Superficial micro-scratches on the car body or on other high-gloss surfaces are harmless, but annoying. Especially in the luxury segment such surfaces are...

Im Focus: Stellar cartography

The Potsdam Echelle Polarimetric and Spectroscopic Instrument (PEPSI) at the Large Binocular Telescope (LBT) in Arizona released its first image of the surface magnetic field of another star. In a paper in the European journal Astronomy & Astrophysics, the PEPSI team presents a Zeeman- Doppler-Image of the surface of the magnetically active star II Pegasi.

A special technique allows astronomers to resolve the surfaces of faraway stars. Those are otherwise only seen as point sources, even in the largest telescopes...

Im Focus: Heading towards a tsunami of light

Researchers at Chalmers University of Technology and the University of Gothenburg, Sweden, have proposed a way to create a completely new source of radiation. Ultra-intense light pulses consist of the motion of a single wave and can be described as a tsunami of light. The strong wave can be used to study interactions between matter and light in a unique way. Their research is now published in the scientific journal Physical Review Letters.

"This source of radiation lets us look at reality through a new angle - it is like twisting a mirror and discovering something completely different," says...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

International Modelica Conference with 330 visitors from 21 countries at OTH Regensburg

11.03.2019 | Event News

Selection Completed: 580 Young Scientists from 88 Countries at the Lindau Nobel Laureate Meeting

01.03.2019 | Event News

LightMAT 2019 – 3rd International Conference on Light Materials – Science and Technology

28.02.2019 | Event News

 
Latest News

Solving the efficiency of Gram-negative bacteria

22.03.2019 | Life Sciences

Bacteria bide their time when antibiotics attack

22.03.2019 | Life Sciences

Open source software helps researchers extract key insights from huge sensor datasets

22.03.2019 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>