Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers measure the ’heat of life,’ offering clues to DNA damage

18.11.2003


A Rutgers-led team has produced the first ever measurement of the "heat of life" – the energies involved in DNA replication and synthesis. The researchers’ findings have opened the door to a better understanding of the origins of replication errors that can result in genetic mutations and serious illness. This is crucial knowledge for the development of medical diagnostics and treatments of genetic disorders.



"Our measurements represent the first direct determination of the energies and their transformations in this most fundamental process in biological chemistry," said principal investigator Kenneth J. Breslauer, Linus C. Pauling Professor, and dean and director of the Division of Life Sciences, Rutgers, The State University of New Jersey.

Breslauer explained that the measurements can be used to construct a virtual landscape that traces the precise energy differences between correct and incorrect DNA synthesis. The differential energy signatures signal the presence of DNA damage, potentially repairable by protein systems inside the cell or specifically designed drugs administered from the outside, or both.


"Knowing the nature and magnitude of the forces involved in correct and incorrect DNA synthesis is essential for rationally designing strategies for intervention, including new drug therapies," said Breslauer. "This knowledge can position us to begin to intervene, enabling us to halt incorrect synthesis through the introduction of highly targeted external agents.

"The only reason we are not a bunch of mutants walking around is that we have exquisite repair systems that can recognize these damaged sites and repair them before they replicate. And, if they do escape initial repair and replicate, we have additional repair systems that find the damage that was replicated and delete it," said Breslauer, noting the contributions of Rutgers’ recent National Medal of Science winner Evelyn Witkin to an understanding of these repair systems.

On rare occasions, both systems fail and when they do, a damaged piece of DNA can be carried on to the next generation. This might result in a particular protein not being able to be made in the offspring or even in the parent. Or, it might result in the improper regulation of a gene that controls cell growth, thereby precipitating uncontrolled growth and the formation of tumors.

DNA reproduces by acting as a template for copying itself, using ingredients available within the cell. Replication, the same as synthesis in this case, is required for any organism to develop, grow and pass on its genetic information. DNA damage is fairly common, a byproduct of our environment and normal metabolism.

In a paper appearing in the Proceedings of the National Academy of Sciences, Breslauer and his colleagues describe their use of a novel combination of technology and chemical biology. They employed the world’s most sensitive thermal detection system, accurate to a millionth of a calorie, to measure reaction heats in a uniquely formulated "DNA soup."

"The degree to which this constitutes a breakthrough will be determined by how researchers here and elsewhere build upon it," Breslauer continued. "It is a foundation that is a necessary, but not sufficient, step in the direction of being able to understand and to regulate DNA synthesis, not only in the lab, but in living organisms."

The Human Genome Project and subsequent revelations provided by X-ray crystallography and nuclear magnetic resonance spectroscopy (NMR) have taught us a great deal about structure in biological systems. Breslauer points out, however, that there is still much to be learned about function and overall driving forces.

He makes the analogy of an automobile, in which knowing what all its component parts look like – the engine, the transmission, the brakes, etc. – still won’t allow you to fix the car if it is not running properly, unless you know the function of each part and the energy transfer between parts.

"These energy studies are essential to bridge the gap between structure and function, a bridge that is needed for our understanding of how biological processes operate and are controlled," Breslauer said.

Joseph Blumberg | EurekAlert!
Further information:
http://www.rutgers.edu/
http://www.pnas.org/misc/journalist.shtml

More articles from Life Sciences:

nachricht Scientists uncover the role of a protein in production & survival of myelin-forming cells
19.07.2018 | Advanced Science Research Center, GC/CUNY

nachricht NYSCF researchers develop novel bioengineering technique for personalized bone grafts
18.07.2018 | New York Stem Cell Foundation

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Global study of world's beaches shows threat to protected areas

19.07.2018 | Earth Sciences

New creepy, crawly search and rescue robot developed at Ben-Gurion U

19.07.2018 | Power and Electrical Engineering

Metal too 'gummy' to cut? Draw on it with a Sharpie or glue stick, science says

19.07.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>