Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers measure the ’heat of life,’ offering clues to DNA damage

18.11.2003


A Rutgers-led team has produced the first ever measurement of the "heat of life" – the energies involved in DNA replication and synthesis. The researchers’ findings have opened the door to a better understanding of the origins of replication errors that can result in genetic mutations and serious illness. This is crucial knowledge for the development of medical diagnostics and treatments of genetic disorders.



"Our measurements represent the first direct determination of the energies and their transformations in this most fundamental process in biological chemistry," said principal investigator Kenneth J. Breslauer, Linus C. Pauling Professor, and dean and director of the Division of Life Sciences, Rutgers, The State University of New Jersey.

Breslauer explained that the measurements can be used to construct a virtual landscape that traces the precise energy differences between correct and incorrect DNA synthesis. The differential energy signatures signal the presence of DNA damage, potentially repairable by protein systems inside the cell or specifically designed drugs administered from the outside, or both.


"Knowing the nature and magnitude of the forces involved in correct and incorrect DNA synthesis is essential for rationally designing strategies for intervention, including new drug therapies," said Breslauer. "This knowledge can position us to begin to intervene, enabling us to halt incorrect synthesis through the introduction of highly targeted external agents.

"The only reason we are not a bunch of mutants walking around is that we have exquisite repair systems that can recognize these damaged sites and repair them before they replicate. And, if they do escape initial repair and replicate, we have additional repair systems that find the damage that was replicated and delete it," said Breslauer, noting the contributions of Rutgers’ recent National Medal of Science winner Evelyn Witkin to an understanding of these repair systems.

On rare occasions, both systems fail and when they do, a damaged piece of DNA can be carried on to the next generation. This might result in a particular protein not being able to be made in the offspring or even in the parent. Or, it might result in the improper regulation of a gene that controls cell growth, thereby precipitating uncontrolled growth and the formation of tumors.

DNA reproduces by acting as a template for copying itself, using ingredients available within the cell. Replication, the same as synthesis in this case, is required for any organism to develop, grow and pass on its genetic information. DNA damage is fairly common, a byproduct of our environment and normal metabolism.

In a paper appearing in the Proceedings of the National Academy of Sciences, Breslauer and his colleagues describe their use of a novel combination of technology and chemical biology. They employed the world’s most sensitive thermal detection system, accurate to a millionth of a calorie, to measure reaction heats in a uniquely formulated "DNA soup."

"The degree to which this constitutes a breakthrough will be determined by how researchers here and elsewhere build upon it," Breslauer continued. "It is a foundation that is a necessary, but not sufficient, step in the direction of being able to understand and to regulate DNA synthesis, not only in the lab, but in living organisms."

The Human Genome Project and subsequent revelations provided by X-ray crystallography and nuclear magnetic resonance spectroscopy (NMR) have taught us a great deal about structure in biological systems. Breslauer points out, however, that there is still much to be learned about function and overall driving forces.

He makes the analogy of an automobile, in which knowing what all its component parts look like – the engine, the transmission, the brakes, etc. – still won’t allow you to fix the car if it is not running properly, unless you know the function of each part and the energy transfer between parts.

"These energy studies are essential to bridge the gap between structure and function, a bridge that is needed for our understanding of how biological processes operate and are controlled," Breslauer said.

Joseph Blumberg | EurekAlert!
Further information:
http://www.rutgers.edu/
http://www.pnas.org/misc/journalist.shtml

More articles from Life Sciences:

nachricht New eDNA technology used to quickly assess coral reefs
18.04.2019 | University of Hawaii at Manoa

nachricht New automated biological-sample analysis systems to accelerate disease detection
18.04.2019 | Polytechnique Montréal

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Explosion on Jupiter-sized star 10 times more powerful than ever seen on our sun

A stellar flare 10 times more powerful than anything seen on our sun has burst from an ultracool star almost the same size as Jupiter

  • Coolest and smallest star to produce a superflare found
  • Star is a tenth of the radius of our Sun
  • Researchers led by University of Warwick could only see...

Im Focus: Quantum simulation more stable than expected

A localization phenomenon boosts the accuracy of solving quantum many-body problems with quantum computers which are otherwise challenging for conventional computers. This brings such digital quantum simulation within reach on quantum devices available today.

Quantum computers promise to solve certain computational problems exponentially faster than any classical machine. “A particularly promising application is the...

Im Focus: Largest, fastest array of microscopic 'traffic cops' for optical communications

The technology could revolutionize how information travels through data centers and artificial intelligence networks

Engineers at the University of California, Berkeley have built a new photonic switch that can control the direction of light passing through optical fibers...

Im Focus: A long-distance relationship in femtoseconds

Physicists observe how electron-hole pairs drift apart at ultrafast speed, but still remain strongly bound.

Modern electronics relies on ultrafast charge motion on ever shorter length scales. Physicists from Regensburg and Gothenburg have now succeeded in resolving a...

Im Focus: Researchers 3D print metamaterials with novel optical properties

Engineers create novel optical devices, including a moth eye-inspired omnidirectional microwave antenna

A team of engineers at Tufts University has developed a series of 3D printed metamaterials with unique microwave or optical properties that go beyond what is...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

First dust conference in the Central Asian part of the earth’s dust belt

15.04.2019 | Event News

Fraunhofer FHR at the IEEE Radar Conference 2019 in Boston, USA

09.04.2019 | Event News

 
Latest News

New automated biological-sample analysis systems to accelerate disease detection

18.04.2019 | Life Sciences

Explosion on Jupiter-sized star 10 times more powerful than ever seen on our sun

18.04.2019 | Physics and Astronomy

New eDNA technology used to quickly assess coral reefs

18.04.2019 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>