Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

U-M scientists find genetic ’fountain of youth’ for adult stem cells

23.10.2003


Scientists at the University of Michigan Comprehensive Cancer Center have identified a gene that controls the amazing ability of adult stem cells to self-renew, or make new copies of themselves, throughout life.



In a series of extensive cell culture and animal studies, U-M scientists discovered that a gene called Bmi-1 was required for self-renewal in two types of adult stem cells – neural stem cells from the central nervous system and neural crest stem cells from the peripheral nervous system. In a previous study, other U-M scientists found that Bmi-1 also was necessary for continued self-renewal in a third variety of blood-forming or hematopoietic stem cells.

"So far, we and our colleagues have studied three important types of adult stem cells and Bmi-1 appears to work similarly in every case," says Sean Morrison, Ph.D., an assistant professor of internal medicine in the U-M Medical School and a Howard Hughes Medical Institute investigator. "This raises the intriguing possibility that Bmi-1 could be a universal regulator controlling self-renewal in all adult stem cells."


The U-M study of Bmi-1’s role in central nervous system (CNS) stem cells and neural crest stem cells from the peripheral nervous system (PNS) will be published Oct. 22 in Nature’s advance online edition.

Co-first authors are Anna Molofsky, a student in the M.D./Ph.D. program at the U-M Medical School, and Ricardo Pardal, Ph.D., a U-M research fellow. Previous U-M research on Bmi-1 and hematopoietic stem cells was conducted by In-Kyung Park, Ph.D., research investigator, and Michael F. Clarke, M.D., professor of internal medicine. Results from that study were published in Nature on April 20.

Unlike embryonic stem cells, which exist for a just few days in the early embryo, various types of adult stem cells remain in many tissues throughout life. When adult stem cells divide, they give rise to more stem cells, in addition to mature cells that replace dead or damaged cells in the body. So, the ability of adult stem cells to divide throughout life is necessary for the maintenance of adult tissues.

Most cells in the body are programmed to stop dividing after a limited number of cell divisions, but adult stem cells and cancer cells have the ability to continue making identical copies of themselves for long periods of time, if not indefinitely. Exactly how they do this has remained a mystery – one that scientists all over the world are trying to solve.

"This paper defines one of the mechanisms that make stem cells special," Morrison says. "We now know that Bmi-1 is an important part of the mechanism used by stem cells to persist through adult life. Certainly there are other genes involved and we need much more research to fully understand the process, but Bmi-1 is a major key to unlocking this important mechanism of self-renewal."

Since cancer cells share the secret of self-renewal with adult stem cells, Morrison says his research "raises the possibility that inappropriate activation or over-expression of Bmi-1 in stem cells could lead to uncontrolled growth and cancer."

Morrison and his research team cultured central nervous system stem cells and neural crest stem cells removed from the brain and gut, respectively, of mice that lacked the Bmi-1 gene. They compared the results with cultured stem cells removed from the same locations of normal mice with the Bmi-1 gene.

"Neural stem cells form structures called neurospheres when grown in culture, but Bmi-1-negative mice formed fewer and smaller neurospheres, which produced fewer daughter neurospheres on subcloning," says Molofsky. "This suggested there were fewer stem cells in tissue from the Bmi-1-deficient mice, and that these stem cells were less able to self-renew."

When U-M scientists compared colonies of central nervous system and peripheral nervous system stem cells taken from Bmi-1-negative and Bmi-1-postive mice immediately after birth and 30 days after birth, they found that the effect of Bmi-1 deficiency on stem cells increased over time. By the time they were one-month-old, it was difficult to detech any neural stem cells in either the central or peripheral nervous systems of the Bmi-1-deficient mice.

"This failure of neural stem cells to persist into adulthood closely paralleled the failure of Bmi-1-deficient hematopoietic stem cells to persist into adulthood, as observed by Park and Clarke," Morrison says. "This suggests that Bmi-1 is consistently required for a variety of adult stem cells to persist into adulthood. Bmi-1-deficient mice are smaller than normal mice, and were previously shown by Maarten van Lohuizen at the Netherlands Cancer Institute to die of hematopoietic and neurological abnormalities between one and two months of age."

"Lack of Bmi-1 doesn’t appear to lead to the death of neural stem cells," says Pardal. "Instead it interferes with the cell’s ability to copy itself. So their numbers continue to decline gradually after birth. The differences become more apparent in adulthood. Compared to normal adult mice, Bmi-1-deficient mice have very few neural stem cells left."

Although it had a major impact on the ability of neural stem cells to self-renew, lack of Bmi-1 had no effect on restricted progenitor cells, which are formed by neural stem cells and give rise only to neurons or glia in the central and peripheral nervous systems, respectively.

"Proliferation of these restricted neural progenitor cells appears to be regulated differently in ways that make them independent from Bmi-1," Morrison says. "This is important, because it suggests that, while Bmi-1 is consistently required for the proliferation of many types of stem cells, it is not required for the proliferation of many types of other cells."

When U-M scientists analyzed alterations in gene expression within Bmi-1-deficient neural stem cells, they found that one of the genes, which was consistently expressed at higher levels, was p16(Ink4a) – a gene known to inhibit cell proliferation.

In additional experiments designed to discover the relationship between Bmi-1 and p16(Ink4a), Morrison’s team found that Bmi-1’s ability to suppress expression of p16(Ink4a) in adult stem cells was critical to preserving their ability to self-renew.

"Deleting p16 from the stem cells only partially rescued the ability of neural stem cells to self-renew," Morrison. "This indicates that Bmi-1 likely regulates multiple different pathways that are important for stem cell self-renewal."


The research was funded by the National Institutes of Health, the Searle Scholars Program, the Howard Hughes Medical Institute, the U-M Medical Scholars’ Training Program and the Spanish Ministry of Science and Technology.

In addition to Clarke and Park, Toshihide Iwashita, M.D., Ph.D., a U-M research fellow, also collaborated on the study.

Sally Pobojewski, pobo@umich.edu, 734-615-6912 or
Kara Gavin, kegavin@umich.edu, 734-764-2220

Sally Pobojewski | EurekAlert!
Further information:
http://www.med.umich.edu/1toolbar/whatsnew.htm

More articles from Life Sciences:

nachricht Solving the efficiency of Gram-negative bacteria
22.03.2019 | Harvard University

nachricht Bacteria bide their time when antibiotics attack
22.03.2019 | Rice University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The taming of the light screw

DESY and MPSD scientists create high-order harmonics from solids with controlled polarization states, taking advantage of both crystal symmetry and attosecond electronic dynamics. The newly demonstrated technique might find intriguing applications in petahertz electronics and for spectroscopic studies of novel quantum materials.

The nonlinear process of high-order harmonic generation (HHG) in gases is one of the cornerstones of attosecond science (an attosecond is a billionth of a...

Im Focus: Magnetic micro-boats

Nano- and microtechnology are promising candidates not only for medical applications such as drug delivery but also for the creation of little robots or flexible integrated sensors. Scientists from the Max Planck Institute for Polymer Research (MPI-P) have created magnetic microparticles, with a newly developed method, that could pave the way for building micro-motors or guiding drugs in the human body to a target, like a tumor. The preparation of such structures as well as their remote-control can be regulated using magnetic fields and therefore can find application in an array of domains.

The magnetic properties of a material control how this material responds to the presence of a magnetic field. Iron oxide is the main component of rust but also...

Im Focus: Self-healing coating made of corn starch makes small scratches disappear through heat

Due to the special arrangement of its molecules, a new coating made of corn starch is able to repair small scratches by itself through heat: The cross-linking via ring-shaped molecules makes the material mobile, so that it compensates for the scratches and these disappear again.

Superficial micro-scratches on the car body or on other high-gloss surfaces are harmless, but annoying. Especially in the luxury segment such surfaces are...

Im Focus: Stellar cartography

The Potsdam Echelle Polarimetric and Spectroscopic Instrument (PEPSI) at the Large Binocular Telescope (LBT) in Arizona released its first image of the surface magnetic field of another star. In a paper in the European journal Astronomy & Astrophysics, the PEPSI team presents a Zeeman- Doppler-Image of the surface of the magnetically active star II Pegasi.

A special technique allows astronomers to resolve the surfaces of faraway stars. Those are otherwise only seen as point sources, even in the largest telescopes...

Im Focus: Heading towards a tsunami of light

Researchers at Chalmers University of Technology and the University of Gothenburg, Sweden, have proposed a way to create a completely new source of radiation. Ultra-intense light pulses consist of the motion of a single wave and can be described as a tsunami of light. The strong wave can be used to study interactions between matter and light in a unique way. Their research is now published in the scientific journal Physical Review Letters.

"This source of radiation lets us look at reality through a new angle - it is like twisting a mirror and discovering something completely different," says...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

International Modelica Conference with 330 visitors from 21 countries at OTH Regensburg

11.03.2019 | Event News

Selection Completed: 580 Young Scientists from 88 Countries at the Lindau Nobel Laureate Meeting

01.03.2019 | Event News

LightMAT 2019 – 3rd International Conference on Light Materials – Science and Technology

28.02.2019 | Event News

 
Latest News

Solving the efficiency of Gram-negative bacteria

22.03.2019 | Life Sciences

Bacteria bide their time when antibiotics attack

22.03.2019 | Life Sciences

Open source software helps researchers extract key insights from huge sensor datasets

22.03.2019 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>