Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UBC researcher discovers ’control room’ that regulates immune responses

22.10.2003


The approximately 50 million people in the U.S. who suffer from autoimmune diseases like HIV/AIDS, multiple sclerosis, and arthritis, may soon be able to control their immune responses, thanks to a breakthrough discovery by a researcher at the University of British Columbia in Vancouver, Canada.



Wilfred Jefferies, a professor at UBC’s Biotechnology Laboratory, has discovered and characterized the mechanics of a cellular pathway that triggers immune responses. He and his team have also uncovered a specialized cell substructure, or organelle, that dictates exactly how the immune system will be activated.

"This discovery opens the door to the immune system control room," says Jefferies, who is also a member of UBC’s Biomedical Research Centre. "We’ve found a mechanism that appears to act like a dial – it can turn immune system response up or down."


Jefferies believes that it will take about five years for scientists to use this information to create new therapies – such as medication or vaccines – to regulate immune responses in humans.

The findings have enormous implications for patients because treatment may be targeted by adjusting the "dial", says Jefferies. Immune responses may be increased to fight infection or reduced to help the body accept transplanted tissue or organs.

The work was recently published online in Nature Immunology and will be the topic of an editorial when the journal appears on newsstands in November.

The research findings can be used immediately to test exactly how the immune system responds to a variety of pathogenic organisms, including bacteria, viruses and tumours, says Jefferies, who is a member of UBC’s departments of Microbiology and Immunology, Medical Genetics and Zoology.

Jefferies’ research focuses on dendritic cells. A network of specialized cells, dendritic cells act as sentinels of the immune system, detecting and relaying information about illness-causing organisms or pathogens. Jefferies and his team have identified a new organelle within dendritic cells that sorts pathogens without being harmed by them and controls signals given to the immune system. The signals turn immune responses up or down, according to the type of pathogen encountered.

The immune system protects the body from potentially harmful substances such as microorganisms, toxins, cancer cells, and blood or tissues from another person. Immune system disorders are conditions where the immune response is over-active, reduced or absent.


The research team includes UBC graduate students Greg Lizee, Jacqueline Tiong, Meimei Tian and Kaan Biron as well as post-doctoral fellow Gene Basha. UBC researchers, who conduct more than 5,225 investigations annually, attracted $377 million in research funding in 2002 / 2003.

NB. Editors: Electronic images of Dr. Jefferies as well as dendrite cells are available. A brief biography is attached.

Wilfred Jefferies

Prof. Wilfred Jefferies completed his PhD at Oxford University after obtaining a BSc from University of Victoria in British Columbia.

His completed research training at centres that include Sweden’s Ludwig Institute for Cancer Research, part of the Karolinska Institute, one of Europe’s largest medical universities, as well as at the Swiss Institute for Experimental Cancer Research. In 1989, he was recruited to UBC by the late Michael Smith, 1993 Nobel Laureate in Chemistry.

Jefferies’ work has explored the function of a brain protein called melanotransferrin that plays a key role in iron transport in central nervous system. He and colleagues discovered a link between the action of this molecule and Alzheimer’s disease. Another area of interest is looking at how the immune system detects aggressive cancer cells and how viruses become recognized by host lymphocytes. He has been involved in using TAP genes to resurrect the immune response in patients with metastatic tumours and the development of new tumour vaccines.

The author of numerous publications, Jefferies is funded by major agencies such as the Canadian Institutes of Health Research, the National Cancer Institute of Canada and the Natural Sciences and Engineering Research Council of Canada.

Hilary Thomson | EurekAlert!
Further information:
http://www.ubc.ca/

More articles from Life Sciences:

nachricht Overlooked molecular machine in cell nucleus may hold key to treating aggressive leukemia
23.04.2019 | Cincinnati Children's Hospital Medical Center

nachricht Bacteria use their enemy -- phage -- for 'self-recognition'
23.04.2019 | Chinese Academy of Sciences Headquarters

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Quantum gas turns supersolid

Researchers led by Francesca Ferlaino from the University of Innsbruck and the Austrian Academy of Sciences report in Physical Review X on the observation of supersolid behavior in dipolar quantum gases of erbium and dysprosium. In the dysprosium gas these properties are unprecedentedly long-lived. This sets the stage for future investigations into the nature of this exotic phase of matter.

Supersolidity is a paradoxical state where the matter is both crystallized and superfluid. Predicted 50 years ago, such a counter-intuitive phase, featuring...

Im Focus: Explosion on Jupiter-sized star 10 times more powerful than ever seen on our sun

A stellar flare 10 times more powerful than anything seen on our sun has burst from an ultracool star almost the same size as Jupiter

  • Coolest and smallest star to produce a superflare found
  • Star is a tenth of the radius of our Sun
  • Researchers led by University of Warwick could only see...

Im Focus: Quantum simulation more stable than expected

A localization phenomenon boosts the accuracy of solving quantum many-body problems with quantum computers which are otherwise challenging for conventional computers. This brings such digital quantum simulation within reach on quantum devices available today.

Quantum computers promise to solve certain computational problems exponentially faster than any classical machine. “A particularly promising application is the...

Im Focus: Largest, fastest array of microscopic 'traffic cops' for optical communications

The technology could revolutionize how information travels through data centers and artificial intelligence networks

Engineers at the University of California, Berkeley have built a new photonic switch that can control the direction of light passing through optical fibers...

Im Focus: A long-distance relationship in femtoseconds

Physicists observe how electron-hole pairs drift apart at ultrafast speed, but still remain strongly bound.

Modern electronics relies on ultrafast charge motion on ever shorter length scales. Physicists from Regensburg and Gothenburg have now succeeded in resolving a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

First dust conference in the Central Asian part of the earth’s dust belt

15.04.2019 | Event News

Fraunhofer FHR at the IEEE Radar Conference 2019 in Boston, USA

09.04.2019 | Event News

 
Latest News

Marine Skin dives deeper for better monitoring

23.04.2019 | Information Technology

Geomagnetic jerks finally reproduced and explained

23.04.2019 | Earth Sciences

Overlooked molecular machine in cell nucleus may hold key to treating aggressive leukemia

23.04.2019 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>