Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Computer Design Yields Better, More Efficient Therapeutic for Preventing Tissue Damage

26.08.2003


The tedious laboratory trial-and-error method for refining protein/peptide-based medicines could be accelerated and complemented by an innovative in silico (on computer) protein design method, according to researchers at Princeton University, the University of Pennsylvania School of Medicine, and the University of California at Riverside.



Their findings, appearing in a recent issue of the Journal of the American Chemical Society, could drastically decrease the time it takes to move potential biopharmaceuticals from the drawing board to the drug store. In this study, the researchers modeled a peptide (a chain of amino acids, such as a protein or protein fragment) called Compstatin, which prevents the autoimmune-mediated damage of organs during transplantation, and various inflammatory diseases. The computer modeling and optimization process cut down on trial and error and created a version of Compstatin seven times more efficient and stable than the original.

Since the function of a peptide depends on its form, the researchers modeled the effects of substituting each of Compstatin’s 13 amino acid subunits with a different amino acid. The novel in silico sequence design method could then model how the altered amino acid sequence folds together in comparison to the original peptide.


"It is a major challenge to design new peptides and proteins that exhibit the desired function such as improved inhibition for the complement system. The challenge centers around the problem of selecting promising sequences from the huge number of possible combinations and making sure those sequences will have the desired three-dimensional structure," said Christodoulos A. Floudas, PhD, a Professor of Chemical Engineering at Princeton University, whose laboratory developed the in silico de novo protein design approach. "At the heart of this innovative technology is a unique two-stage computer protein design method that not only selects and ranks sequences for a particular fold, but also validates the stability and specificity of the fold for these selected sequences."

"It would have taken us months - or even years - to synthesize and screen the 80 quadrillion possible peptide sequences that the protein design program considered," John D. Lambris, PhD, a professor in Penn’s Department of Pathology & Laboratory Medicine and a co-author on the study whose laboratory had discovered Compstatin in 1996. "In the end, we came up with two analogues to Compstatin - each created by altering one amino acid - that performed its job even better than the original protein."

Compstatin works by blocking human complement, the immune system’s passive alarm network that detects pathogens in the blood. Unfortunately, complement can also attack healthy tissue, and a variety of diseases are associated with complement gone awry, such as multiple sclerosis and hemolytic anemia. In addition, complement is thought to play a role in the destruction of cells during strokes, heart attacks, and burn injuries. The complement reaction is actually a series of interlocking cascades, or chain reactions, of biochemical events involving at least 30 proteins. Compstatin works by preventing the activation of C3, a protein that functions at the point where all the complement protein cascades intersect.

The two Compstatin analogues derived from the experiment are superior in their ability to cling to and, hence, prevent the activation of the C3 complement protein. Based on these two analogs, more Compstatin analogs have since been designed, some of which are 200 fold more active that the original Compstatin, according to Lambris. These new Compstatin analogs will be further refined and tested until ready for clinical trials.

To create templates of the desired shape for Compstatin, Dimitrios Morikis, PhD, a researcher at the Department of Chemical and Environmental Engineering of University of California, Riverside, identified the three-dimensional structure of Compstatin in solution via nuclear magnetic resonance (NMR) experiments, which he then computationally refined.

The computational de novo protein design system, developed at Princeton University by Floudas and postdoctoral associate John Klepeis, is a technological advance made possible by (i) a novel mixed-integer optimization model that narrows 200 trillion amino acid sequences into a short list of candidates that are likely to produce a peptide of the desired shape, and (ii) a system called ASTRO-FOLD that, using first-principles, predicts the structures that would be formed by the candidate sequences. The second step confirms and refines the first.

A distributed computing environment consisting of eighty Linux-based computers was used for all the computational predictions, and the predicted new peptides were subsequently synthesized and experimentally validated in the Lambris laboratory at Penn.

Greg Lester | University of Pennsylvania
Further information:
http://www.uphs.upenn.edu/news/News_Releases/august03/computer.htm

More articles from Life Sciences:

nachricht Chip-based optical sensor detects cancer biomarker in urine
05.12.2019 | The Optical Society

nachricht Scientist identify new marker for insecticide resistance in malaria mosquitoes
05.12.2019 | Liverpool School of Tropical Medicine

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The coldest reaction

With ultracold chemistry, researchers get a first look at exactly what happens during a chemical reaction

The coldest chemical reaction in the known universe took place in what appears to be a chaotic mess of lasers. The appearance deceives: Deep within that...

Im Focus: How do scars form? Fascia function as a repository of mobile scar tissue

Abnormal scarring is a serious threat resulting in non-healing chronic wounds or fibrosis. Scars form when fibroblasts, a type of cell of connective tissue, reach wounded skin and deposit plugs of extracellular matrix. Until today, the question about the exact anatomical origin of these fibroblasts has not been answered. In order to find potential ways of influencing the scarring process, the team of Dr. Yuval Rinkevich, Group Leader for Regenerative Biology at the Institute of Lung Biology and Disease at Helmholtz Zentrum München, aimed to finally find an answer. As it was already known that all scars derive from a fibroblast lineage expressing the Engrailed-1 gene - a lineage not only present in skin, but also in fascia - the researchers intentionally tried to understand whether or not fascia might be the origin of fibroblasts.

Fibroblasts kit - ready to heal wounds

Im Focus: McMaster researcher warns plastic pollution in Great Lakes growing concern to ecosystem

Research from a leading international expert on the health of the Great Lakes suggests that the growing intensity and scale of pollution from plastics poses serious risks to human health and will continue to have profound consequences on the ecosystem.

In an article published this month in the Journal of Waste Resources and Recycling, Gail Krantzberg, a professor in the Booth School of Engineering Practice...

Im Focus: Machine learning microscope adapts lighting to improve diagnosis

Prototype microscope teaches itself the best illumination settings for diagnosing malaria

Engineers at Duke University have developed a microscope that adapts its lighting angles, colors and patterns while teaching itself the optimal...

Im Focus: Small particles, big effects: How graphene nanoparticles improve the resolution of microscopes

Conventional light microscopes cannot distinguish structures when they are separated by a distance smaller than, roughly, the wavelength of light. Superresolution microscopy, developed since the 1980s, lifts this limitation, using fluorescent moieties. Scientists at the Max Planck Institute for Polymer Research have now discovered that graphene nano-molecules can be used to improve this microscopy technique. These graphene nano-molecules offer a number of substantial advantages over the materials previously used, making superresolution microscopy even more versatile.

Microscopy is an important investigation method, in physics, biology, medicine, and many other sciences. However, it has one disadvantage: its resolution is...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

The Future of Work

03.12.2019 | Event News

First International Conference on Agrophotovoltaics in August 2020

15.11.2019 | Event News

Laser Symposium on Electromobility in Aachen: trends for the mobility revolution

15.11.2019 | Event News

 
Latest News

Detailed insight into stressed cells

05.12.2019 | Life Sciences

State of 'hibernation' keeps haematopoietic stem cells young - Niches in the bone marrow protect from ageing

05.12.2019 | Life Sciences

First field measurements of laughing gas isotopes

05.12.2019 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>