Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

First structure of transporter enzyme family is solved

01.08.2003


Finding will aid drug design to combat depression, stroke and diabetes. Scientists are a step closer to understanding how essential nutrients, vitamins and minerals are ferried into cells.



For the first time, a member of the Major Facilitator Superfamily (MFS) of transport proteins, found in almost every form of life, has been visualised by researchers from Imperial College London and the University of California, Los Angeles.

Reporting in Science today, the researchers reveal the structure of lactose permease, the enzyme in Esherichia coli that helps pump lactose, the major sugar in milk, into cells. Using the structure data, the researchers propose a possible mechanism of action, which is likely to be common among other transport proteins in this family.


Professor So Iwata of Imperial’s Centre for Structural Biology and senior author of the paper explains: "Membrane transport proteins play major roles in depression, stroke and diabetes. Unravelling their structure is critical not only for understanding how we function, but also to improve drug design. Indeed, two of the most widely prescribed drugs in the world, Prozac and Prilosec, act through these proteins.

"The three-dimensional structure of lactose permease gives us our first real picture of how the family of enzymes work. For example, in humans the MFS transporter GLUT4 is responsible for increased glucose uptake in response to insulin stimulation, which has important implications for diabetes. Using the structure of lactose permease we can model GLUT4 and design drugs to control glucose uptake."

Membrane transport proteins play a crucial role in maintaining the selective internal environment of cells. They act as gatekeepers by controlling the entry of nutrients and the exit of waste products. But only four transport protein structures are presently known, compared with over 30,000 soluble protein structures, because they are notoriously difficult to crystallise.

Professor Iwata’s Laboratory of Membrane Protein Crystallography is one of a small number around the world that focuses on determining the three-dimensional structure of membrane embedded proteins.

By combining expertise with Professor Ron Kaback of the University of California, who has been working on lactose permease for 30 years, they have finally solved the structure of this important protein.

Previous biochemical studies had identified six sites within the genetic code of lactose permease that are thought to be crucial to transportation. Using the latest X-ray crystallography techniques, the researchers were able to visualise how lactose permease binds to sugar.

"We have been able to pinpoint areas in the genetic code critical for binding and transport of sugar, which are consistent with information derived from biochemical studies, "said Professor Iwata.

By combining the structural data with previous findings the researchers propose a mechanism of enzyme action.

"Computer simulations show that the enzyme works in a surprisingly simple way. The enzyme is literally gate-keeping. Usually the gate is open towards the outside of the cells and various substances can reach the sugar-binding pocket in the middle of the enzyme, embedded in the cell membrane.

"Only when the enzyme identifies lactose does the other gate, connected to the inside of the cell, open and let the sugar go through. This process is driven by energy called the ’proton motive force’ and should be common among membrane transport proteins."

Professor Iwata added: "Only 40 years ago the idea that genes could be specifically turned on or off in response to different environmental conditions was revolutionary. It was studies in E. coli that showed the bacterial cellular machinery needed to digest lactose is only activated when glucose is not available. Now we have a detailed molecular understanding of how lactose permease contributes to this process."

Judith H Moore | EurekAlert!
Further information:
http://www.imperial.ac.uk

More articles from Life Sciences:

nachricht Climate Impact Research in Hannover: Small Plants against Large Waves
17.08.2018 | Leibniz Universität Hannover

nachricht First transcription atlas of all wheat genes expands prospects for research and cultivation
17.08.2018 | Leibniz-Institut für Pflanzengenetik und Kulturpflanzenforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

 
Latest News

Smallest transistor worldwide switches current with a single atom in solid electrolyte

17.08.2018 | Physics and Astronomy

Robots as Tools and Partners in Rehabilitation

17.08.2018 | Information Technology

Climate Impact Research in Hannover: Small Plants against Large Waves

17.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>