The Scientific Reality behind Nanotechnology

Nanotechnology is an emerging range of technologies in which medicine and engineering meet physics and chemistry. Nanotechnology supporters claim that the machines and materials it may produce will mean faster computers, less pollution and cheaper energy, and longer and healthier lives.

Critics, however – from Prince Charles to Jurassic Park author Michael Crichton – fear that nanomachines could run amok and turn the surface of the Earth into an uninhabitable morass. Environmentalists also question the safety of nanoparticles.

The debate, like that on genetically modified food, is noisy but often uninformative. Before the technology has even emerged, the debate has largely become polarised into utopian and dystopian visions.

In a report published today (28th July 2003), a team at the University of Sheffield funded by the Economic and Social Research Council investigates the scientific reality behind nanotechnology, and looks at the hopes and the fears that it raises – and provides a sober assessment of the possibilities that will help both sides of the debate.

The Social and Economic Challenges of Nanotechnology is the result of collaboration between a social scientist and a natural scientist: Professor Stephen Wood of the ESRC Centre of Innovation and Organisation (COI), and Professor Richard Jones of the Department of Physics and Astronomy, with Alison Geldart (COI), all at the University of Sheffield. It describes the emerging atom-by-atom science of nanotechnology and discusses the sweeping social and economic changes it might bring.

The word nanotechnology has been used to refer to everything from mundane, here and now applications, like stain-resistant trousers, to the most speculative extrapolations, such as self-replicating nano-robots. The report carefully distinguishes between what these technologies are delivering now, what may be possible in the future, and what is likely to remain beyond the bounds of feasibility.

The role of social science in nanotechnology´s development should be more than one of smoothing the path for its acceptance. Social science can help construct the lens (or lenses) through which we see nanotechnology, and understand its implications so these can be anticipated and incorporated into development.

Nanotechnology is also an opportunity to investigate broader themes, such as an evaluation of the drivers behind the technology development process, how society deals with risks under uncertainty, and issues of inequities and economic divides.

Easily readable, the report serves as a primer for those wanting to know what nanotechnology means. For those already engaged in the technology, boosters and doubters alike, it will become a major reference.

For further information contact:

Professor Stephen Wood, +44-0207-272-1558 or 0771-7377-185, s.j.wood@sheffield.ac.uk

Professor Richard Jones, +44-0114-2224530, r.a.l.jones@sheffield.ac.uk

Media Contact

Anna Hinds EurekAlert!

All latest news from the category: Life Sciences and Chemistry

Articles and reports from the Life Sciences and chemistry area deal with applied and basic research into modern biology, chemistry and human medicine.

Valuable information can be found on a range of life sciences fields including bacteriology, biochemistry, bionics, bioinformatics, biophysics, biotechnology, genetics, geobotany, human biology, marine biology, microbiology, molecular biology, cellular biology, zoology, bioinorganic chemistry, microchemistry and environmental chemistry.

Back to home

Comments (0)

Write a comment

Newest articles

High-energy-density aqueous battery based on halogen multi-electron transfer

Traditional non-aqueous lithium-ion batteries have a high energy density, but their safety is compromised due to the flammable organic electrolytes they utilize. Aqueous batteries use water as the solvent for…

First-ever combined heart pump and pig kidney transplant

…gives new hope to patient with terminal illness. Surgeons at NYU Langone Health performed the first-ever combined mechanical heart pump and gene-edited pig kidney transplant surgery in a 54-year-old woman…

Biophysics: Testing how well biomarkers work

LMU researchers have developed a method to determine how reliably target proteins can be labeled using super-resolution fluorescence microscopy. Modern microscopy techniques make it possible to examine the inner workings…

Partners & Sponsors