Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

U.Va. researchers discover mechanism for the regulation of low-voltage-activated calcium channels

10.07.2003


Researchers at the University of Virginia Health System have defined a molecular mechanism by which the activity of low-voltage-activated calcium channels can be decreased. Low-voltage-activated, T-type calcium channels are found in many types of tissue and alterations in their activity can contribute to several pathological conditions, including congestive heart failure, hypertension, cardiac arrhythmias, epilepsy and neuropathic pain. The findings will be published in the July 10 edition of Nature. The team led by Paula Q. Barrett, professor of pharmacology and principle investigator of the study, found that G-protein beta gamma subunits, a class of cell membrane proteins that mediate the actions of hormones within the cell, markedly decrease the flow of calcium through these channels into the cell interior. Because elevation of calcium within cells stimulates cellular activity, regulation of calcium entry is an important way by which the function of cells can be controlled. The research uncovered that only one member of a large family of G-protein subunits binds directly to the calcium channel protein to inhibit channel activity.



"These studies identify the T-type calcium channel as a new target for G-protein beta gamma subunits," Barrett said. "The extraordinary specificity of the interaction between these regulatory molecules could be operative in many types of cells and provides exciting insight into the highly selective ways in which cells work. Knowledge of these interactions will lead to the development of new and more specific drugs in the future."



Joshua T. Wolfe, a graduate student whose work is supported by the American Heart Association, conducted much of the work for this research. Support for the research also came from the National Institutes of Health and the University of Virginia Cardiovascular Research Center.

Abena Foreman-Trice | EurekAlert!
Further information:
http://hsc.virginia.edu/news

More articles from Life Sciences:

nachricht Computer simulations visualize how DNA is recognized to convert cells into stem cells
17.02.2020 | Max-Planck-Institut für molekulare Biomedizin

nachricht Researchers at the University of Freiburg use new method to investigate neural oscillations
14.02.2020 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Skyrmions like it hot: Spin structures are controllable even at high temperatures

Investigation of the temperature dependence of the skyrmion Hall effect reveals further insights into possible new data storage devices

The joint research project of Johannes Gutenberg University Mainz (JGU) and the Massachusetts Institute of Technology (MIT) that had previously demonstrated...

Im Focus: Making the internet more energy efficient through systemic optimization

Researchers at Chalmers University of Technology, Sweden, recently completed a 5-year research project looking at how to make fibre optic communications systems more energy efficient. Among their proposals are smart, error-correcting data chip circuits, which they refined to be 10 times less energy consumptive. The project has yielded several scientific articles, in publications including Nature Communications.

Streaming films and music, scrolling through social media, and using cloud-based storage services are everyday activities now.

Im Focus: New synthesis methods enhance 3D chemical space for drug discovery

After helping develop a new approach for organic synthesis -- carbon-hydrogen functionalization -- scientists at Emory University are now showing how this approach may apply to drug discovery. Nature Catalysis published their most recent work -- a streamlined process for making a three-dimensional scaffold of keen interest to the pharmaceutical industry.

"Our tools open up whole new chemical space for potential drug targets," says Huw Davies, Emory professor of organic chemistry and senior author of the paper.

Im Focus: Quantum fluctuations sustain the record superconductor

Superconductivity approaching room temperature may be possible in hydrogen-rich compounds at much lower pressures than previously expected

Reaching room-temperature superconductivity is one of the biggest dreams in physics. Its discovery would bring a technological revolution by providing...

Im Focus: New coronavirus module in SORMAS

HZI-developed app for disease control is expanded to stop the spread of the pathogen

At the end of December 2019, the first cases of pneumonia caused by a novel coronavirus were reported from the Chinese city of Wuhan. Since then, infections...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

70th Lindau Nobel Laureate Meeting: Around 70 Laureates set to meet with young scientists from approx. 100 countries

12.02.2020 | Event News

11th Advanced Battery Power Conference, March 24-25, 2020 in Münster/Germany

16.01.2020 | Event News

Laser Colloquium Hydrogen LKH2: fast and reliable fuel cell manufacturing

15.01.2020 | Event News

 
Latest News

How do rotor blades deform in wind gusts?

17.02.2020 | Physics and Astronomy

Understanding Metal Ion Release from Hip Implants

17.02.2020 | Materials Sciences

Computer simulations visualize how DNA is recognized to convert cells into stem cells

17.02.2020 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>