Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Abnormal plant shows scientists path to plant, animal development

09.07.2003


A pickle-shaped root is revealing how plants develop from embryos to adults and also may hold answers about cancer cell growth.


Joe Ogas, an associate professor of biochemistry, displays a dish of two-day-old arabidopsis seedlings in his Purdue University research lab. Using the plants, Ogas hopes his research will provide clues about how cancer cells grow. (Agricultural Communications photo/Tom Campbell)



Purdue University researchers have uncovered nine specific genes that are shut off before plants make the developmental transition from the embryonic stage to adulthood. Results of the latest study are published in the July issue of The Plant Journal.

"We now have data supporting the hypothesis that the gene PKL is a master regulator of genes that promote embryonic identity," said Joe Ogas, an associate professor of biochemistry. "Some of the genes we identified are known to control plant embryo development. They tell the plant, ’be a seed.’ Then PKL says, ’You’re done being a seed,’ and turns them off."


The genes the scientists identified are part of a class called LEAFY COTYLEDON (LEC). The researchers call them the "master regulators" of embryogenesis, the formation and growth of the embryo. This new study suggests that PKL is the master switch that turns LEC genes off so that the plant can develop the root and leaf systems of adult plants.

"We hope to identify new factors common to both plants and animals that researchers looking at human development haven’t yet found," Ogas said. "These new factors might then provide insight into regulation of gene expression in humans during normal developmental processes and during abnormal events such as cancer."

It has been shown that a protein from a specific family plays an analogous role in controlling development in both the laboratory plant Arabidopsis and the laboratory animal C. elegans, a tiny transparent worm.

"This is our first attempt to understand how PKL works as a regulator of gene expression," Ogas said. "The neat thing about this work is that it’s also shown that in animal systems, a protein homologous, or corresponding, to PKL is also involved in turning off developmentally regulated genes. So, we’re finding similar regulatory roles for both human and plant proteins."

Ogas and his team found the embryo-promoting genes by studying a strain of Arabidopsis in which PKL is abnormal, or mutated. The mutated gene, designated as lowercase pkl, was unable to repress the embryogenesis genes. The result is a plant that is dwarfed compared to a normal plant, has a pickle-shaped root, and characteristics of both an embryo and an adult plant.

Ogas said they found that embryo-promoting genes are expressed at inappropriately high levels when PKL has not turned them off. This results in seedlings that still have embryonic traits.

The researchers believe they now can turn PKL on and off and that they know the chronology of steps needed to regulate genes that foster embryonic behavior.

The researchers studied 8,000 Arabidopsis genes to determine the specific ones that would only turn off if PKL is fully functional. Once PKL switches those embryonic genes off, the plants can proceed into normal adult development.

Ogas and his team used microarray analysis, in which bits of DNA are placed on a microchip, to identify nine genes involved in the development pathway. They also found that a number of genes that may be important to plants in the embryonic stage apparently are not affected by PKL.

"It is likely that some other proteins that act in this PKL-development pathway are used in animal systems," Ogas said. "Thus, some of the lessons that we learn by working in Arabidopsis also might be applicable to regulation of human gene expression."

The other researchers involved in this study were: postdoctoral student Stanley Dean Rider Jr. and graduate student James Henderson, both of the Purdue Department of Biochemistry; assistant professor Jeanne Romero-Severson of the Purdue Department of Forestry and Natural Resources and the Computational Genomics Center; and research scientist Ronald Jerome and professor Howard Edenberg, both of the Indiana University Department of Biochemistry and Molecular Biology.

The Indiana 21st Century Research and Technology Fund, the Indiana Genomics Initiative Program, the Lilly Endowment Inc., and BASF Inc. provided funding for this research.

Writer: Susan A. Steeves, (765) 496-7481, ssteeves@purdue.edu

Source: Joe Ogas, (765) 496-3969, ogas@purdue.edu

Susan A. Steeves | Purdue News
Further information:
http://news.uns.purdue.edu/html4ever/030707.Ogas.pickle.html
http://www.blackwell-synergy.com/links/doi/10.1046/j.1365-313X.2003.01783.x/full/

More articles from Life Sciences:

nachricht Climate Impact Research in Hannover: Small Plants against Large Waves
17.08.2018 | Leibniz Universität Hannover

nachricht First transcription atlas of all wheat genes expands prospects for research and cultivation
17.08.2018 | Leibniz-Institut für Pflanzengenetik und Kulturpflanzenforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

 
Latest News

Smallest transistor worldwide switches current with a single atom in solid electrolyte

17.08.2018 | Physics and Astronomy

Robots as Tools and Partners in Rehabilitation

17.08.2018 | Information Technology

Climate Impact Research in Hannover: Small Plants against Large Waves

17.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>