Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Invading species have tough time cracking diverse neighborhood

03.07.2003


An exotic species or weed trying to establish itself in a new ecosystem will have a harder time if it encounters a diverse mix of resident species rather than just a few species, according to research at the University of Minnesota. Working with prairie plants, the research team found that a rich assemblage of species repels invaders because it is more likely to contain plants occupying a niche similar to what the invader needs, as well as plants that make good all-around competitors. The findings have implications for land managers, suggesting that maintaining the native diversity of species can help keep out weeds and exotic species. The study is published in the current Proceedings of the National Academy of Sciences.



"Our study suggests that invading species that resemble resident species are less likely to get established," said Joseph Fargione, a graduate student in the university’s department of ecology, evolution and behavior and first author of the study. "This makes it difficult to predict which exotic species will become problem weeds by studying the weeds alone. Their success actually depends to a large extent on the characteristics of the species already present in the ecosystem."

The researchers worked with nine-square-meter plots of land at the university’s Cedar Creek Natural History Area in southern Minnesota. The plots contained between one and 24 species of prairie plants that had become well established, with 20-24 replicates at each level of diversity. The researchers introduced a mix of seeds from 27 other plants, all native to the area, to each plot. All the plants fell into one of four types, or "guilds": warm-season grasses, cool-season grasses, legumes and forbs.


In general, as the species richness of established plants increased. introduced plants from any guild did more poorly. Using statistics to tease out the repellant effects of individual plant guilds, the researchers found that each guild was most effective at limiting the success of introduced plants from its own guild. That finding was statistically significant for all guilds except legumes, which tend to enrich the soil with nitrogen, a boon to virtually any plant trying to invade the relatively nitrogen-poor soil at Cedar Creek.

The presence of warm-season grasses--which grow most vigorously in late summer--had a strong inhibitory effect on introduced plants from all four guilds. Warm-season grasses are perennials with extensive root systems, and while they inhibited other warm-season grasses most strongly, they offer stiff competition to any plant trying to get established near them, Fargione said.

Plants tend to inhibit the establishment of species from the same guild because those are the species with similar growth characteristics and resource needs, said Fargione. That is, an invader that’s too similar to the resident plants is likely to find its niche already filled. But guilds are broad categories, and increasing the number of resident species in each guild provides additional resistance to invaders by strengthening the likelihood that some residents will closely resemble the invaders. And more diverse ecosystems are more likely to contain all-around tough competitors like warm-season grasses.

The study confirms an idea put forth by ecologist Charles Elton in his 1958 book "The Ecology of Invasions by Animals and Plants," in which he hypothesized that diverse communities would be more resistant to invasion.

"Our study explains why," said Fargione. "It’s because diverse plantings fill up all the niches."

Fargione’s colleagues in the study were Cynthia S Brown of the department of bioagricultural sciences and pest management, Colorado State University, and David Tilman, Regents Professor of Ecology, University of Minnesota. The work was supported by the Andrew Mellon Foundation, the National Science Foundation and the National Center for Ecological Analysis and Synthesis.


Reporters can obtain a copy of the paper from Leikny Johnson, 202-334-3382, or by e-mailing PNASnews@nas.edu.

Contacts:

Joseph Fargione, ecology graduate student, 612-625-5738
Deane Morrison, University News Service, 612-624-2346

Deane Morrison | EurekAlert!
Further information:
http://www.umn.edu/

More articles from Life Sciences:

nachricht Zebrafish's near 360 degree UV-vision knocks stripes off Google Street View
22.06.2018 | University of Sussex

nachricht New cellular pathway helps explain how inflammation leads to artery disease
22.06.2018 | Cedars-Sinai Medical Center

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Temperature-controlled fiber-optic light source with liquid core

In a recent publication in the renowned journal Optica, scientists of Leibniz-Institute of Photonic Technology (Leibniz IPHT) in Jena showed that they can accurately control the optical properties of liquid-core fiber lasers and therefore their spectral band width by temperature and pressure tuning.

Already last year, the researchers provided experimental proof of a new dynamic of hybrid solitons– temporally and spectrally stationary light waves resulting...

Im Focus: Overdosing on Calcium

Nano crystals impact stem cell fate during bone formation

Scientists from the University of Freiburg and the University of Basel identified a master regulator for bone regeneration. Prasad Shastri, Professor of...

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

Graphene assembled film shows higher thermal conductivity than graphite film

22.06.2018 | Materials Sciences

Fast rising bedrock below West Antarctica reveals an extremely fluid Earth mantle

22.06.2018 | Earth Sciences

Zebrafish's near 360 degree UV-vision knocks stripes off Google Street View

22.06.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>