Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Missing link detected in insulin mechanism

20.06.2003


Protein could provide clues for understanding type two diabetes



Along the multifaceted insulin pathway, Dartmouth Medical School biochemists have found a missing link that may spark the connection for glucose to move into cells. The discovery is another strand in the remarkable web of molecular signals that regulate traffic through cells and helps elucidate crucial aspects of how the hormone insulin regulates a membrane movement process.

The work is being discussed June 21 at the Endocrine Society meeting in Philadelphia by Dr. Gustav Lienhard, professor of biochemistry, who also reported the results in a recent issue of the Journal of Biological Chemistry with colleagues from Dartmouth and Harvard.


Insulin acts to maintain the appropriate level of glucose in the blood. After eating, blood glucose rises, triggering release of insulin from the pancreas to lower the sugar level. One way insulin does that is to accelerate the removal of glucose from blood and into muscle and fat cells. Key aspects of the mechanism for insulin to stimulate this glucose uptake remain to be sorted out.

A conundrum is that muscle and fat cells have proteins known as transporters for ferrying glucose, but these transporters are in the wrong place. Instead of being in the cell’s surface membrane where glucose can climb aboard for passage, they are in vesicles within the cell. So insulin, pressing on a muscle or fat cell, prods these vesicles inside the cell to fuse with the surface membrane, putting the transporters where they can ferry the glucose into the cell. Suddenly the surface membrane has many transporters and glucose can enter the cell rapidly.

Lienhard likens the process to a room with too few doors. "You have a lot of people wanting to get into the room that only has two doors so they would all have to go through these two doors. But inside the room is a stack of doors. People are the glucose molecules and the doors are the transporters; in response to insulin, these doors get shoved into the walls of the room and more people can get into the room quickly."

Lienhard leads a team studying how insulin impinging on the outside of the cell spurs these transporter-containing vesicles to move toward and fuse with the cell surface. It involves linking up two specialized areas of cell biology: cell signaling and membrane trafficking.

Insulin binding to its receptor on the outside of the cell membrane initiates a series of actions. That receptor extends through to the inner surface of the membrane and triggers signaling steps, or a signal transduction pathway, that eventually leads to the vesicle movement and fusion.

The Dartmouth researchers have found a protein that seems to bridge the signaling and membrane movement, a span between the signal transduction pathway and the machinery that controls the fusion of the transporter-containing vesicles with the cell surface.

"That was a missing link in this field. If we’re right, this looks like a key protein that connects signaling to trafficking. At the end of the signal transduction pathway, we found a protein that’s modified by phosphorylation--by putting phosphate groups on it--and this protein also acts on a key protein component in the machinery for vesicle movement and fusion," Lienhard says.

This protein could provide clues for understanding type two diabetes. A hallmark of the illness is insulin resistance: muscle and fat tissues do not respond adequately to insulin. The transporters they need on their cell surface are trapped inside and it takes a higher concentration of insulin to move additional transporters to the cell surface. Lienhard stresses that studies of the protein in diabetic rodent models need to be done.

The findings could also shed light on how hormones regulate movement of membrane proteins in general, Lienhard adds. "The protein has a widespread tissue distribution. It is found in all the major tissues in the body--brain, liver, kidney, so it could function in other systems where a hormone treatment causes the rapid movement of proteins to the cell surface."

The researchers used a cultured fat cell line that originated from mice. Once they found the protein, they were able to identify it by comparing its amino acid sequence to the gene database.

Contact:

Andy Nordhoff
e-mail: dms.communications@dartmouth.edu

Andy Nordhoff | EurekAlert!
Further information:
http://www.dartmouth.edu

More articles from Life Sciences:

nachricht Key evidence associating hydrophobicity with effective acid catalysis
25.03.2019 | Tokyo Metropolitan University

nachricht Bacteria may travel thousands of miles through the air globally
25.03.2019 | Rutgers University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The taming of the light screw

DESY and MPSD scientists create high-order harmonics from solids with controlled polarization states, taking advantage of both crystal symmetry and attosecond electronic dynamics. The newly demonstrated technique might find intriguing applications in petahertz electronics and for spectroscopic studies of novel quantum materials.

The nonlinear process of high-order harmonic generation (HHG) in gases is one of the cornerstones of attosecond science (an attosecond is a billionth of a...

Im Focus: Magnetic micro-boats

Nano- and microtechnology are promising candidates not only for medical applications such as drug delivery but also for the creation of little robots or flexible integrated sensors. Scientists from the Max Planck Institute for Polymer Research (MPI-P) have created magnetic microparticles, with a newly developed method, that could pave the way for building micro-motors or guiding drugs in the human body to a target, like a tumor. The preparation of such structures as well as their remote-control can be regulated using magnetic fields and therefore can find application in an array of domains.

The magnetic properties of a material control how this material responds to the presence of a magnetic field. Iron oxide is the main component of rust but also...

Im Focus: Self-healing coating made of corn starch makes small scratches disappear through heat

Due to the special arrangement of its molecules, a new coating made of corn starch is able to repair small scratches by itself through heat: The cross-linking via ring-shaped molecules makes the material mobile, so that it compensates for the scratches and these disappear again.

Superficial micro-scratches on the car body or on other high-gloss surfaces are harmless, but annoying. Especially in the luxury segment such surfaces are...

Im Focus: Stellar cartography

The Potsdam Echelle Polarimetric and Spectroscopic Instrument (PEPSI) at the Large Binocular Telescope (LBT) in Arizona released its first image of the surface magnetic field of another star. In a paper in the European journal Astronomy & Astrophysics, the PEPSI team presents a Zeeman- Doppler-Image of the surface of the magnetically active star II Pegasi.

A special technique allows astronomers to resolve the surfaces of faraway stars. Those are otherwise only seen as point sources, even in the largest telescopes...

Im Focus: Heading towards a tsunami of light

Researchers at Chalmers University of Technology and the University of Gothenburg, Sweden, have proposed a way to create a completely new source of radiation. Ultra-intense light pulses consist of the motion of a single wave and can be described as a tsunami of light. The strong wave can be used to study interactions between matter and light in a unique way. Their research is now published in the scientific journal Physical Review Letters.

"This source of radiation lets us look at reality through a new angle - it is like twisting a mirror and discovering something completely different," says...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

International Modelica Conference with 330 visitors from 21 countries at OTH Regensburg

11.03.2019 | Event News

Selection Completed: 580 Young Scientists from 88 Countries at the Lindau Nobel Laureate Meeting

01.03.2019 | Event News

LightMAT 2019 – 3rd International Conference on Light Materials – Science and Technology

28.02.2019 | Event News

 
Latest News

Bacteria may travel thousands of miles through the air globally

25.03.2019 | Life Sciences

Key evidence associating hydrophobicity with effective acid catalysis

25.03.2019 | Life Sciences

Drug diversity in bacteria

25.03.2019 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>