Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Possible New Cell Type Found in Developing Inner Ear

12.06.2003


Dr. Paul Sohal



The answer to how the complex, cavernous inner ear forms from a mostly homogenous group of cells may be that it doesn’t, says a Medical College of Georgia researcher who has found a new cell type that appears to migrate to the developing ear.

Dr. Paul Sohal first saw the cells he named ventrally emigrating neural tube cells in 1995, following the path of newly formed nerves out of the developing neural tube.

His research published in the June issue of the International Journal of Developmental Neuroscience says one place VENT cells go is to the developing inner ear.



“One thing which has been a puzzle was how can a single source of cells gives rise to entirely different systems, functionally different systems,” Dr. Sohal, developmental biologist, says of the inner ear which is believed to be formed from the same cells that form the outer layer of skin or epidermis. The only other cell believed to be in the region is the pigment-producing melanocyte.

By day two of development in the chick embryo, Dr. Sohal’s animal model, the neural tube -- a tubular structure that gives rise to the brain and spinal cord -- has formed and is covered with a skin called the surface ectoderm. That same day, an area of the skin on either side and about midway down the neural tube begins to thicken into what is known as an auditory placode. This thickened area begins to move inward, eventually working free from surrounding tissue and, by day three, forms the otic vesicle that will become the inner ear. In humans this should happen in the second month of development.

“What we have found is that, at this stage, VENT cells begin to move in from the neural tube and mix with these cells,” Dr. Sohal says. He believes VENT cells provide a heterogeneous mix to the epidermal cells, which could help explain the ability of cells within the region to form so many different types of tissue.

The developed inner ear is a complex structure that enables hearing and balance. The visible outer ear focuses sound to the middle then inner ear, which contain the eardrum and three bones that convert sound energy into mechanical energy. The movement of the bones applies pressure to the cochlea, a snail-shaped, fluid-filled organ, converting sound to a stimulus that triggers the hair cells. The hair cells -- which can be lost to disease, trauma or a congenital defect -- are activated and send signals to the nerve and eventually the brain where sound is perceived.

Dr. Sohal has published studies that show VENT cells in many areas of the body, most recently in the heart, small intestines and stomach. Still, he is meeting with resistance from some fellow scientists who are skeptical that he has found the first new cell type to be identified in the embryo since 1868. Some say the cells are simply experimental artifacts.

He believes they are much more, that the cells not only can form the four major types of body tissue but that they are the source of stem cells.

“The data is intriguing,” says Dr. David J. Kozlowski, developmental geneticist at MCG who is studying hair cell regeneration within the zebrafish inner ear to try to understand how hair cells regenerate in fish and not mammals.

Dr. Kozlowski, who also directs MCG’s Transgenic Zebrafish Core Facility, is looking for VENT cells in the zebrafish, another developmental model, to see if he can document their existence. “It’s certainly worth investing some effort to see if they exist in fish and, if they do, where do they go,” he says.

Dr. Sohal, undaunted most days, says the ubiquitous cells go pretty much everywhere, at least everywhere he has looked to date. “I think this tells us they are a general phenomenon, that the cells have a fundamental role.”

Back inside the ear, Dr. Sohal is now looking to determine if VENT cells are part of functional units within the inner ear. “What we have to do is find out where they end up. Are they part of the cochlea? Are they part of the sensory organs?” he says.

His work is funded by the National Institutes of Health.

Toni Baker | Medical College of Georgia
Further information:
http://www.mcg.edu/news/2003NewsRel/Sohal.html

More articles from Life Sciences:

nachricht Solving the efficiency of Gram-negative bacteria
22.03.2019 | Harvard University

nachricht Bacteria bide their time when antibiotics attack
22.03.2019 | Rice University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The taming of the light screw

DESY and MPSD scientists create high-order harmonics from solids with controlled polarization states, taking advantage of both crystal symmetry and attosecond electronic dynamics. The newly demonstrated technique might find intriguing applications in petahertz electronics and for spectroscopic studies of novel quantum materials.

The nonlinear process of high-order harmonic generation (HHG) in gases is one of the cornerstones of attosecond science (an attosecond is a billionth of a...

Im Focus: Magnetic micro-boats

Nano- and microtechnology are promising candidates not only for medical applications such as drug delivery but also for the creation of little robots or flexible integrated sensors. Scientists from the Max Planck Institute for Polymer Research (MPI-P) have created magnetic microparticles, with a newly developed method, that could pave the way for building micro-motors or guiding drugs in the human body to a target, like a tumor. The preparation of such structures as well as their remote-control can be regulated using magnetic fields and therefore can find application in an array of domains.

The magnetic properties of a material control how this material responds to the presence of a magnetic field. Iron oxide is the main component of rust but also...

Im Focus: Self-healing coating made of corn starch makes small scratches disappear through heat

Due to the special arrangement of its molecules, a new coating made of corn starch is able to repair small scratches by itself through heat: The cross-linking via ring-shaped molecules makes the material mobile, so that it compensates for the scratches and these disappear again.

Superficial micro-scratches on the car body or on other high-gloss surfaces are harmless, but annoying. Especially in the luxury segment such surfaces are...

Im Focus: Stellar cartography

The Potsdam Echelle Polarimetric and Spectroscopic Instrument (PEPSI) at the Large Binocular Telescope (LBT) in Arizona released its first image of the surface magnetic field of another star. In a paper in the European journal Astronomy & Astrophysics, the PEPSI team presents a Zeeman- Doppler-Image of the surface of the magnetically active star II Pegasi.

A special technique allows astronomers to resolve the surfaces of faraway stars. Those are otherwise only seen as point sources, even in the largest telescopes...

Im Focus: Heading towards a tsunami of light

Researchers at Chalmers University of Technology and the University of Gothenburg, Sweden, have proposed a way to create a completely new source of radiation. Ultra-intense light pulses consist of the motion of a single wave and can be described as a tsunami of light. The strong wave can be used to study interactions between matter and light in a unique way. Their research is now published in the scientific journal Physical Review Letters.

"This source of radiation lets us look at reality through a new angle - it is like twisting a mirror and discovering something completely different," says...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

International Modelica Conference with 330 visitors from 21 countries at OTH Regensburg

11.03.2019 | Event News

Selection Completed: 580 Young Scientists from 88 Countries at the Lindau Nobel Laureate Meeting

01.03.2019 | Event News

LightMAT 2019 – 3rd International Conference on Light Materials – Science and Technology

28.02.2019 | Event News

 
Latest News

Solving the efficiency of Gram-negative bacteria

22.03.2019 | Life Sciences

Bacteria bide their time when antibiotics attack

22.03.2019 | Life Sciences

Open source software helps researchers extract key insights from huge sensor datasets

22.03.2019 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>