Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

DNA sequence of chromosome 7 decoded

11.04.2003


Canadian-led project generates database with medical annotation available to the public



Scientists at The Hospital for Sick Children (HSC) have compiled the complete DNA sequence of human chromosome 7 and decoded nearly all of the genes on this medically important portion of the human genome. The research, which involved an international collaboration of 90 scientists from 10 countries, publishes in the online version of the scientific journal Science on April 10, 2003.

Two years ago, a draft (or fragmented) human genome DNA sequence was published by the public Human Genome Project, and separately by Celera Genomics. To coincide with celebrations of the 50th anniversary of the discovery of the structure of DNA, the DNA sequencing phase of the Human Genome Project will be declared completed in April.


"In a massive study, we combined all information in public and private databases, including data generated by Celera Genomics, as well 15 years of our data and analyses to generate what we believe is the most comprehensive description of any human chromosome. Chromosome 7 is often referred to as ’Canada’s chromosome’ because of this country’s major contribution to the mapping and identification of many important disease genes on that chromosome over many years," said the study’s lead author Dr. Stephen Scherer, a senior scientist at The Hospital for Sick Children and an associate professor in the Department of Molecular and Medical Genetics at the University of Toronto (U of T).

"This is the first time that a significant effort has been made to incorporate medical observations with DNA sequence as part of genomic research, which will make it accessible and useful to health-care professionals and researchers outside of the genomics field," said Dr. Johanna Rommens, a study co-author, interim head of the Genetics and Genomic Biology Research Program at HSC, and an associate professor in the Department of Molecular and Medical Genetics at U of T.

There are 23 pairs of chromosomes in the human genome and each person inherits one of each set from their parents. The chromosomes encode genes that control all aspects of human development including some behavioural characteristics.

This study revealed that chromosome 7 contains 158 million nucleotides of DNA (5 per cent of the genome) and 1,455 genes (of the estimated 28,000 protein-coding genes in the human genome), some of which cause diseases such as cystic fibrosis, leukemia, and autism. The project also describes discoveries of sites along the chromosome where invading viruses integrate, ’fragile’ regions prone to breakage, areas called ’gene jungles’ and ’gene deserts’, as well as primate-specific genes.

In the study, all medically relevant landmarks along the chromosome were identified, including the several hundred chromosome breakpoints where disease-related mutations occur. The breakpoints found in autism patients were used to pinpoint specific genes associated with the disorder.

The information generated by the chromosome 7 project has been established in a publicly accessible database that can be used to facilitate disease gene research. For example, a physician can enter the genetic deletions found in a patient and the known phenotypes (manifestations of the genetic mutation) are identified. The chromosome 7 database is available at www.chr7.org (the site is publicly accessible after the journal embargo lifts).

Dr. Martin Godbout, president and CEO of Genome Canada said, "This work represents an unprecedented Canadian contribution to the Human Genome Project. More importantly, it exemplifies how genetic, genomic, and clinician scientists in the public and private sectors worldwide can work together in a common goal to understand the human genome and its role in health and disease."


This research was supported by Genome Canada through the Ontario Genomics Institute, the Canadian Institutes of Health Research, the Canadian Genetic Diseases Network, The Centre for Applied Genomics at The Hospital for Sick Children, and The Hospital for Sick Children Foundation. Dr. Scherer is an Investigator of the Canadian Institutes of Health Research and International Scholar of the Howard Hughes Medical Institute.

The Hospital for Sick Children, affiliated with the University of Toronto, is Canada’s most research-intensive hospital and the largest centre dedicated to improving children’s health in the country. Its mission is to provide the best in family-centred, compassionate care, to lead in scientific and clinical advancement, and to prepare the next generation of leaders in child health. For more information, please visit http://www.sickkids.ca.

For more information, please contact:
Laura Greer, Public Affairs
The Hospital for Sick Children
416-813-5046
laura.greer@sickkids.ca

Anie Perrault
Vice-President, Communications
Genome Canada
613-751-4460 ext. 13
aperrault@genomecanda.ca

Laura Greer | EurekAlert!
Further information:
http://www.utoronto.ca/
http://www.sickkids.ca

More articles from Life Sciences:

nachricht Lab-free infection test could eliminate guesswork for doctors
26.02.2020 | University of Southampton

nachricht MOF co-catalyst allows selectivity of branched aldehydes of up to 90%
26.02.2020 | National Centre of Competence in Research (NCCR) MARVEL

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: High-pressure scientists in Bayreuth discover promising material for information technology

Researchers at the University of Bayreuth have discovered an unusual material: When cooled down to two degrees Celsius, its crystal structure and electronic properties change abruptly and significantly. In this new state, the distances between iron atoms can be tailored with the help of light beams. This opens up intriguing possibilities for application in the field of information technology. The scientists have presented their discovery in the journal "Angewandte Chemie - International Edition". The new findings are the result of close cooperation with partnering facilities in Augsburg, Dresden, Hamburg, and Moscow.

The material is an unusual form of iron oxide with the formula Fe₅O₆. The researchers produced it at a pressure of 15 gigapascals in a high-pressure laboratory...

Im Focus: From China to the South Pole: Joining forces to solve the neutrino mass puzzle

Study by Mainz physicists indicates that the next generation of neutrino experiments may well find the answer to one of the most pressing issues in neutrino physics

Among the most exciting challenges in modern physics is the identification of the neutrino mass ordering. Physicists from the Cluster of Excellence PRISMA+ at...

Im Focus: Therapies without drugs

Fraunhofer researchers are investigating the potential of microimplants to stimulate nerve cells and treat chronic conditions like asthma, diabetes, or Parkinson’s disease. Find out what makes this form of treatment so appealing and which challenges the researchers still have to master.

A study by the Robert Koch Institute has found that one in four women will suffer from weak bladders at some point in their lives. Treatments of this condition...

Im Focus: A step towards controlling spin-dependent petahertz electronics by material defects

The operational speed of semiconductors in various electronic and optoelectronic devices is limited to several gigahertz (a billion oscillations per second). This constrains the upper limit of the operational speed of computing. Now researchers from the Max Planck Institute for the Structure and Dynamics of Matter in Hamburg, Germany, and the Indian Institute of Technology in Bombay have explained how these processes can be sped up through the use of light waves and defected solid materials.

Light waves perform several hundred trillion oscillations per second. Hence, it is natural to envision employing light oscillations to drive the electronic...

Im Focus: Freiburg researcher investigate the origins of surface texture

Most natural and artificial surfaces are rough: metals and even glasses that appear smooth to the naked eye can look like jagged mountain ranges under the microscope. There is currently no uniform theory about the origin of this roughness despite it being observed on all scales, from the atomic to the tectonic. Scientists suspect that the rough surface is formed by irreversible plastic deformation that occurs in many processes of mechanical machining of components such as milling.

Prof. Dr. Lars Pastewka from the Simulation group at the Department of Microsystems Engineering at the University of Freiburg and his team have simulated such...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

70th Lindau Nobel Laureate Meeting: Around 70 Laureates set to meet with young scientists from approx. 100 countries

12.02.2020 | Event News

11th Advanced Battery Power Conference, March 24-25, 2020 in Münster/Germany

16.01.2020 | Event News

Laser Colloquium Hydrogen LKH2: fast and reliable fuel cell manufacturing

15.01.2020 | Event News

 
Latest News

Scientists 'film' a quantum measurement

26.02.2020 | Physics and Astronomy

Melting properties determine the biological functions of the cuticular hydrocarbon layer of ants

26.02.2020 | Interdisciplinary Research

Lights, camera, action... the super-fast world of droplet dynamics

26.02.2020 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>