Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

DNA sequence of chromosome 7 decoded

11.04.2003


Canadian-led project generates database with medical annotation available to the public



Scientists at The Hospital for Sick Children (HSC) have compiled the complete DNA sequence of human chromosome 7 and decoded nearly all of the genes on this medically important portion of the human genome. The research, which involved an international collaboration of 90 scientists from 10 countries, publishes in the online version of the scientific journal Science on April 10, 2003.

Two years ago, a draft (or fragmented) human genome DNA sequence was published by the public Human Genome Project, and separately by Celera Genomics. To coincide with celebrations of the 50th anniversary of the discovery of the structure of DNA, the DNA sequencing phase of the Human Genome Project will be declared completed in April.


"In a massive study, we combined all information in public and private databases, including data generated by Celera Genomics, as well 15 years of our data and analyses to generate what we believe is the most comprehensive description of any human chromosome. Chromosome 7 is often referred to as ’Canada’s chromosome’ because of this country’s major contribution to the mapping and identification of many important disease genes on that chromosome over many years," said the study’s lead author Dr. Stephen Scherer, a senior scientist at The Hospital for Sick Children and an associate professor in the Department of Molecular and Medical Genetics at the University of Toronto (U of T).

"This is the first time that a significant effort has been made to incorporate medical observations with DNA sequence as part of genomic research, which will make it accessible and useful to health-care professionals and researchers outside of the genomics field," said Dr. Johanna Rommens, a study co-author, interim head of the Genetics and Genomic Biology Research Program at HSC, and an associate professor in the Department of Molecular and Medical Genetics at U of T.

There are 23 pairs of chromosomes in the human genome and each person inherits one of each set from their parents. The chromosomes encode genes that control all aspects of human development including some behavioural characteristics.

This study revealed that chromosome 7 contains 158 million nucleotides of DNA (5 per cent of the genome) and 1,455 genes (of the estimated 28,000 protein-coding genes in the human genome), some of which cause diseases such as cystic fibrosis, leukemia, and autism. The project also describes discoveries of sites along the chromosome where invading viruses integrate, ’fragile’ regions prone to breakage, areas called ’gene jungles’ and ’gene deserts’, as well as primate-specific genes.

In the study, all medically relevant landmarks along the chromosome were identified, including the several hundred chromosome breakpoints where disease-related mutations occur. The breakpoints found in autism patients were used to pinpoint specific genes associated with the disorder.

The information generated by the chromosome 7 project has been established in a publicly accessible database that can be used to facilitate disease gene research. For example, a physician can enter the genetic deletions found in a patient and the known phenotypes (manifestations of the genetic mutation) are identified. The chromosome 7 database is available at www.chr7.org (the site is publicly accessible after the journal embargo lifts).

Dr. Martin Godbout, president and CEO of Genome Canada said, "This work represents an unprecedented Canadian contribution to the Human Genome Project. More importantly, it exemplifies how genetic, genomic, and clinician scientists in the public and private sectors worldwide can work together in a common goal to understand the human genome and its role in health and disease."


This research was supported by Genome Canada through the Ontario Genomics Institute, the Canadian Institutes of Health Research, the Canadian Genetic Diseases Network, The Centre for Applied Genomics at The Hospital for Sick Children, and The Hospital for Sick Children Foundation. Dr. Scherer is an Investigator of the Canadian Institutes of Health Research and International Scholar of the Howard Hughes Medical Institute.

The Hospital for Sick Children, affiliated with the University of Toronto, is Canada’s most research-intensive hospital and the largest centre dedicated to improving children’s health in the country. Its mission is to provide the best in family-centred, compassionate care, to lead in scientific and clinical advancement, and to prepare the next generation of leaders in child health. For more information, please visit http://www.sickkids.ca.

For more information, please contact:
Laura Greer, Public Affairs
The Hospital for Sick Children
416-813-5046
laura.greer@sickkids.ca

Anie Perrault
Vice-President, Communications
Genome Canada
613-751-4460 ext. 13
aperrault@genomecanda.ca

Laura Greer | EurekAlert!
Further information:
http://www.utoronto.ca/
http://www.sickkids.ca

More articles from Life Sciences:

nachricht Scientists uncover the role of a protein in production & survival of myelin-forming cells
19.07.2018 | Advanced Science Research Center, GC/CUNY

nachricht NYSCF researchers develop novel bioengineering technique for personalized bone grafts
18.07.2018 | New York Stem Cell Foundation

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Future electronic components to be printed like newspapers

A new manufacturing technique uses a process similar to newspaper printing to form smoother and more flexible metals for making ultrafast electronic devices.

The low-cost process, developed by Purdue University researchers, combines tools already used in industry for manufacturing metals on a large scale, but uses...

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

A smart safe rechargeable zinc ion battery based on sol-gel transition electrolytes

20.07.2018 | Power and Electrical Engineering

Reversing cause and effect is no trouble for quantum computers

20.07.2018 | Information Technology

Princeton-UPenn research team finds physics treasure hidden in a wallpaper pattern

20.07.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>