Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Stanford researchers uncover mystery behind how skull plates fuse

10.04.2003


Stanford University Medical Center researchers have identified a protein responsible for ensuring correct skull growth in newborn mice. The protein, called Noggin, inhibits fusion of bony plates in the skull until developmentally appropriate. The scientists hope that Noggin may one day replace surgery as a way to treat premature skull fusion in infants.



"About 1 in 2,000 children has growth plates in their skull that fuse prematurely," said Michael Longaker, MD. "The brain is rapidly expanding in size during the first two years of life. If the brain’s container - the skull - can’t expand in a similar fashion, you have a big problem." Left untreated, the condition can lead to mental retardation, blindness and seizures, as well as a severely misshapen head.

Longaker, a pediatric craniofacial surgeon at Lucile Packard Children’s Hospital and a professor of surgery at the School of Medicine, can correct the defect by removing sections of fused bone from an infant’s skull. But the operation is complex. And because it’s difficult to accurately predict how much room is needed for expansion, the procedure may need to be repeated as the brain grows.


At first, Longaker and his colleagues suspected that the root of the problem was the inappropriate expression of proteins that stimulate bone growth in the skull. They began comparing when and where these proteins were produced, but they started on the wrong track.

"It’s not as simple as promoting bone induction," said Longaker, the principal investigator of the research, which is published in the April 10 issue of Nature. "It turns out that the inhibitors are equally important. We had been missing the point."

The researchers discovered that the bone-promoting proteins are present between all the skull growth plates in mice: those that are actively fusing and those that are not. In contrast, Noggin, a known inhibitor of bone formation, was found only between plates that remained open. The scientists began to suspect that, like a testy chaperone at a high school dance, Noggin keeps the two edges of the skull apart. And like anxious teenagers, the bones reach out to each other when Noggin is removed from the mix.

Noggin’s new role in skull fusion was confirmed dramatically when the scientists injected a Noggin-producing virus between the bone plates along mice foreheads. The plates, which normally would have fused, remained open. This resulted in the animals developing blunt muzzles and wide-set eyes.

Although the results were clear, there was another mystery to be solved. In a seemingly futile loop, the very bone-promoting protein required for fusion also induced Noggin production. Then the researchers found that over-expression of another protein, called FGF2, inhibited Noggin expression in cell culture. The finding correlated with the fact that some human disorders characterized by premature skull fusion are caused by mutations in a receptor for FGF2 that kick the protein into overdrive. These mutants also turned off Noggin expression.

"We had been wondering how FGF2, which is involved in promoting new blood vessels, stimulated bone formation," said Longaker. "Now we know that it works, in part, by decreasing the amounts of inhibitors of bone formation."

The scientists are now working to understand how FGF2 decreases Noggin production, with an eye to a less-invasive treatment for infants with premature fusion. But such treatment would likely require early diagnosis of any problems.

"Can Noggin unlock an existing bone bridge? That would be a tall order," said Longaker. "But if premature fusion could be diagnosed before birth, a window of therapy could present itself." He envisions a day when sophisticated prenatal ultrasound or genetic testing could identify infants at risk before fusion began. By injecting Noggin-producing cells or viruses into the breach between growth plates, physicians could stave off inappropriate fusion until the brain finished expanding.

"Unlike some gene therapy challenges, we wouldn’t need to express Noggin for the life of the child," said Longaker. "The first two years would be adequate." Such a treatment would represent a huge leap over existing therapy. "Craniofacial surgery is more of a chisel-and-saw approach," he added. "We’ve had technical improvements, but it hasn’t really evolved. This finding represents a biomolecular approach that may re-establish normal growth and appearance of the skull, which is the most important research outcome."

Longaker’s colleagues include Stephen Warren, MD, of Stanford; Lisa Brunet, PhD, and Richard Harland, PhD, of the University of California-Berkeley; and Aris Economides, PhD, of Regeneron Pharmaceuticals, Inc, in Tarrytown, NY. Noggin was first identified by Harland in 1992 as a protein that guides tissue fate in developing frog embryos.


Stanford University Medical Center integrates research, medical education and patient care at its three institutions - Stanford University School of Medicine, Stanford Hospital & Clinics and Lucile Packard Children’s Hospital at Stanford. .For more information, please visit the Office of Communication & Public Affairs Web site at http://mednews.stanford.edu/ and the Lucile Packard Children’s Hospital Web site at http://www.lpch.org/.

Krista Conger | EurekAlert!
Further information:
http://med-www.stanford.edu/MedCenter/MedSchool/
http://www.lpch.org/

More articles from Life Sciences:

nachricht Barium ruthenate: A high-yield, easy-to-handle perovskite catalyst for the oxidation of sulfides
16.07.2018 | Tokyo Institute of Technology

nachricht The secret sulfate code that lets the bad Tau in
16.07.2018 | American Society for Biochemistry and Molecular Biology

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Subaru Telescope helps pinpoint origin of ultra-high energy neutrino

16.07.2018 | Physics and Astronomy

Barium ruthenate: A high-yield, easy-to-handle perovskite catalyst for the oxidation of sulfides

16.07.2018 | Life Sciences

New research calculates capacity of North American forests to sequester carbon

16.07.2018 | Earth Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>