Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Phase transition in bilayers could affect their performance

22.11.2002


Phospholipid bilayers that mimic cell membranes in living organisms are of interest as substrates for biosensors and for the controlled release of pharmaceuticals. To better understand how these materials behave with embedded proteins, a necessary first step is to understand how the bilayers respond by themselves.



As will be reported in the Dec. 9 issue of Physical Review Letters (published online Nov. 21), scientists at the University of Illinois at Urbana-Champaign have studied the phase transition in a supported bilayer and discovered some fundamental properties that could affect the material’s performance in various applications.

"Like water turning into ice, bilayers can exist in either a fluid phase or a solid (gel) phase, depending upon temperature," said Andrew Gewirth, a professor of chemistry. "Using a sensitive atomic force microscope, we studied how the microstructure of these bilayers changed during the transformation process."


First, the scientists supported a phospholipid bilayer on a piece of exceptionally smooth mica. Then they studied the properties of this bilayer as it changed phases from fluid to gel and back to fluid. Because touching the surface would destroy the delicate film, the researchers used a noncontact mode in which they oscillated the probe tip in close proximity to the surface, and measured the resulting change in amplitude.

"The atomic force microscope images showed that the fluid to gel phase transition produced substantial tearing of the bilayer, resulting in numerous big, foam-like defects," Gewirth said.

Because the mica substrate was molecularly smooth with no significant surface defects, the scientists concluded that the rips and tears were caused by an intrinsic property of the phase transition itself.

"The gel phase is more dense than the fluid phase," Gewirth said, "so the defects are likely caused by the change in density and, to a lesser extent, by thermal contraction."

As the material solidified, it became highly strained as a consequence of the large density difference between the two phases, Gewirth said. When the membrane was melted again, stress was released in places the scientists hadn’t expected: The melting began in areas other than the defects. In fact, the defects were the last to change back to the fluid phase, because the strain had been removed in the defects as a result of the tearing process.

"The bottom line is that history matters," said Steve Granick, a professor of materials science, chemistry and physics. "The method of preparing the gel phase strongly affects the resulting defect structure, and this in turn has considerable impact on the subsequent gel to fluid transition."

The presence of the defects poses a few problems, but also offers some opportunities, to making and using the bilayers. In biosensors, for example, the defects could affect both device performance and long-term storage characteristics.

"These biosensors would normally be used with the membrane in the fluid phase, but they would be stored in the gel phase," Granick said. "The defects that form as the material solidifies could cause the membrane to respond differently than was expected. As a result, the sensor might not detect the chemical it was designed for."

On the other hand, the defects could be useful as sites for modifying the properties of supported bilayers through the incorporation of additional constituents, the scientists said. In this case, the defects would serve as portals through the membrane, where proteins or other components could be introduced, and then encased by raising the temperature.

"Our experiments have shown that these phospholipid bilayers are a lot more complicated than most people realized," Granick said. "There are many complex materials processing issues that must be considered when making and using them."

Collaborators on the project were graduate student Anne Xie and postdoctoral researcher Ryo Yamada. The U.S. Department of Energy funded the work through a grant to the Frederick Seitz Materials Research Laboratory on the Illinois campus.

Jim Kloeppel, Physical Sciences Editor
(217) 244-1073; kloeppel@uiuc.edu

James E. Kloeppel | UIUC news bureau
Further information:
http://www.news.uiuc.edu/scitips/02/1121phasetransition.html
http://www.scs.uiuc.edu/

More articles from Life Sciences:

nachricht Microscope measures muscle weakness
16.11.2018 | Friedrich-Alexander-Universität Erlangen-Nürnberg

nachricht Good preparation is half the digestion
16.11.2018 | Max-Planck-Institut für Stoffwechselforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: UNH scientists help provide first-ever views of elusive energy explosion

Researchers at the University of New Hampshire have captured a difficult-to-view singular event involving "magnetic reconnection"--the process by which sparse particles and energy around Earth collide producing a quick but mighty explosion--in the Earth's magnetotail, the magnetic environment that trails behind the planet.

Magnetic reconnection has remained a bit of a mystery to scientists. They know it exists and have documented the effects that the energy explosions can...

Im Focus: A Chip with Blood Vessels

Biochips have been developed at TU Wien (Vienna), on which tissue can be produced and examined. This allows supplying the tissue with different substances in a very controlled way.

Cultivating human cells in the Petri dish is not a big challenge today. Producing artificial tissue, however, permeated by fine blood vessels, is a much more...

Im Focus: A Leap Into Quantum Technology

Faster and secure data communication: This is the goal of a new joint project involving physicists from the University of Würzburg. The German Federal Ministry of Education and Research funds the project with 14.8 million euro.

In our digital world data security and secure communication are becoming more and more important. Quantum communication is a promising approach to achieve...

Im Focus: Research icebreaker Polarstern begins the Antarctic season

What does it look like below the ice shelf of the calved massive iceberg A68?

On Saturday, 10 November 2018, the research icebreaker Polarstern will leave its homeport of Bremerhaven, bound for Cape Town, South Africa.

Im Focus: Penn engineers develop ultrathin, ultralight 'nanocardboard'

When choosing materials to make something, trade-offs need to be made between a host of properties, such as thickness, stiffness and weight. Depending on the application in question, finding just the right balance is the difference between success and failure

Now, a team of Penn Engineers has demonstrated a new material they call "nanocardboard," an ultrathin equivalent of corrugated paper cardboard. A square...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

“3rd Conference on Laser Polishing – LaP 2018” Attracts International Experts and Users

09.11.2018 | Event News

On the brain’s ability to find the right direction

06.11.2018 | Event News

European Space Talks: Weltraumschrott – eine Gefahr für die Gesellschaft?

23.10.2018 | Event News

 
Latest News

Purdue cancer identity technology makes it easier to find a tumor's 'address'

16.11.2018 | Health and Medicine

Good preparation is half the digestion

16.11.2018 | Life Sciences

Microscope measures muscle weakness

16.11.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>