Evolution: fish select for the survival of the fittest

An important breakthrough has been made in determining the forces responsible for the evolution of populations in nature. By studying wild populations of grayling (a close relative of salmon), Mikko Koskinen and Craig Primmer at the University of Helsinki and Thrond Haugen at the University of Oslo found that natural selection, a force suggested by Charles Darwin in `The Origin of Species`, was responsible for up-to 90% of grayling evolution.

In their study, published in Nature on October 24, the team stated that their findings were in fact the reverse of what many people expected: As the grayling originated from a common source only about a century ago and were very small in number, a random process known as genetic drift was expected to be the driving evolutionary force. However, by comparing the evolution of important biological features of the fish (such as growth rate) with the evolution of sections of DNA not affected by natural selection, the team found that natural selection was in fact much more important than genetic drift. This finding agrees with the hotly debated view of a British geneticist Sir Ronald Fisher, one of the founders of the field of population genetics.

Media Contact

Minna Meriläinen alfa

More Information:

http://www.helsinki.fi/

All latest news from the category: Life Sciences and Chemistry

Articles and reports from the Life Sciences and chemistry area deal with applied and basic research into modern biology, chemistry and human medicine.

Valuable information can be found on a range of life sciences fields including bacteriology, biochemistry, bionics, bioinformatics, biophysics, biotechnology, genetics, geobotany, human biology, marine biology, microbiology, molecular biology, cellular biology, zoology, bioinorganic chemistry, microchemistry and environmental chemistry.

Back to home

Comments (0)

Write a comment

Newest articles

A universal framework for spatial biology

SpatialData is a freely accessible tool to unify and integrate data from different omics technologies accounting for spatial information, which can provide holistic insights into health and disease. Biological processes…

How complex biological processes arise

A $20 million grant from the U.S. National Science Foundation (NSF) will support the establishment and operation of the National Synthesis Center for Emergence in the Molecular and Cellular Sciences (NCEMS) at…

Airborne single-photon lidar system achieves high-resolution 3D imaging

Compact, low-power system opens doors for photon-efficient drone and satellite-based environmental monitoring and mapping. Researchers have developed a compact and lightweight single-photon airborne lidar system that can acquire high-resolution 3D…

Partners & Sponsors