Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Gene research warning for commercial fishing

13.08.2002


Commercial fishing practices can reduce genetic diversity in fish populations, possibly threatening their productivity and adaptability to environmental change, new research has found.



An Australian zoologist now at the University of Melbourne, along with colleagues from the United Kingdom and New Zealand, was the first to record a decline in the genetic diversity of a commercially exploited marine species.

Their findings, published in the latest volume of the "Proceedings of the National Academy of Sciences", shout a warning that could force a rethink to current fisheries management and the research focus into sustainable fishing.


Dr Greg Adcock analysed the DNA found in scales preserved from two populations of New Zealand snapper collected from the 1950s to 1998. One population had been commercially fished since the late 1800s. The other was a ’virgin’ population, being subjected to subsistence and recreational fishing only until the scale collection began.

Adcock and colleagues found that the virgin population from Tasman Bay on New Zealand’s South Island had suffered an unexpected decline in genetic diversity, starting from the time it began to be commercially exploited in the 1950s.

The other population, from the North Island’s Hauraki Bay, showed no decline in genetic diversity in the nearly 50 years to 1998.

The paper reports that the Tasman Bay’s effective population size (the number of fish in the population capable of breeding) is 100,000 times fewer than its total number, and several orders of magnitude lower than expected.

"In Tasman Bay, commercial fishing has often reduced total numbers to as low as about one million. This leaves only a few hundred fish to contribute to the next generation, a dangerously low genetic base from which to sustain a population," says Adcock.

Less diversity means less adaptability

"With a high effective population you can retain a large amount of rare genetic variation. Such variation is lost as numbers decline. A rare variant may not play a significant role in the current environment, but if a fish population loses a large number of these genes, such as happened in Tasman Bay, they risk losing the ability to adapt to changes such as global warming, pollution and human induced changes to predator and prey populations," he says.

Adcock points to recent assertions that ocean warming is suspected of causing recruitment failure of cold-adapted North Sea cod.

"Until now nobody suspected that any loss of diversity was happening as it was thought that even in over-fished populations where their numbers are still be in the millions, that there would still be a sufficiently large effective population to prevent declines in genetic diversity," says Adcock.

"A population of several million may actually be in danger of losing genetic variability, which may have long-term consequences," he says.

"Genetic diversity should become a management consideration in many exploited marine species. Many fully exploited or over-fished stocks may be already suffering loss of diversity.

"We don’t know yet the minimal level of genetic diversity required to sustain a commercial fishery long-term, but there is enough evidence now to suggest we need to be cautious and begin to reassess our understanding of fishery management and the sustainability of the industry."

How genetic diversity was measured

To assess the loss of genetic diversity, Adcock and his colleagues studied seven regions of the snapper’s chromosomes, known as microsatellite loci, which are highly variable and mutate at high rates.

The high rates of mutation in microsatellites produce the levels of variation required for researchers to work out how long ago two or more populations or species diverged from a common population or ancestor. In this case, Adcock and colleagues used this variation to assess the changes in genetic diversity over time.

The Tasman Bay population showed a significant decline in diversity in six of the seven loci.

To explain why Hauraki Gulf failed to show any loss of genetic diversity, Adcock contends that the genetic variation had already been lost in the early years of intensive fishing, prior to 1950.

"Hauraki Gulf is a larger population than Tasman Bay and should naturally retain more genetic variation. When the study began, however, its variation was lower than Tasman Bay’s," he says.

Adcock believes the findings open up exciting possibilities of further research and collaboration with the various fishing industry bodies.

"A close collaboration between fishery biologists, geneticists and the fishing industry would be required to carry out research into the biology and behaviour of marine species and their possible implications for fisheries management and conservation," he says.

Adcock’s colleagues from Hull University (UK) were Lorenz Hauser (now at the University of Washington), Julio Bernal Ramirez and Gary Carvalho, and from New Zealand, Peter Smith of the National Institute of Water and Atmospheric Research.


More information

Dr Greg Adcock
University of Melbourne
Telephone +(61 3) 8344 4346/4351 or 9434 1844
E-mail gjadcock@unimelb.edu.au

Jason Major
Media officer, Communications and Marketing
The University of Melbourne
Telephone +(61 3) 8344 0181 or 0421 641 506
Fax +(61 3) 9349 4135
E-mail jmajor@unimelb.edu.au

Jason Major | EurekAlert!
Further information:
http://www.unimelb.edu.au/

More articles from Life Sciences:

nachricht Biophysicists reveal how optogenetic tool works
29.05.2020 | Moscow Institute of Physics and Technology

nachricht Mapping immune cells in brain tumors
29.05.2020 | University of Zurich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Biotechnology: Triggered by light, a novel way to switch on an enzyme

In living cells, enzymes drive biochemical metabolic processes enabling reactions to take place efficiently. It is this very ability which allows them to be used as catalysts in biotechnology, for example to create chemical products such as pharmaceutics. Researchers now identified an enzyme that, when illuminated with blue light, becomes catalytically active and initiates a reaction that was previously unknown in enzymatics. The study was published in "Nature Communications".

Enzymes: they are the central drivers for biochemical metabolic processes in every living cell, enabling reactions to take place efficiently. It is this very...

Im Focus: New double-contrast technique picks up small tumors on MRI

Early detection of tumors is extremely important in treating cancer. A new technique developed by researchers at the University of California, Davis offers a significant advance in using magnetic resonance imaging to pick out even very small tumors from normal tissue. The work is published May 25 in the journal Nature Nanotechnology.

researchers at the University of California, Davis offers a significant advance in using magnetic resonance imaging to pick out even very small tumors from...

Im Focus: I-call - When microimplants communicate with each other / Innovation driver digitization - "Smart Health“

Microelectronics as a key technology enables numerous innovations in the field of intelligent medical technology. The Fraunhofer Institute for Biomedical Engineering IBMT coordinates the BMBF cooperative project "I-call" realizing the first electronic system for ultrasound-based, safe and interference-resistant data transmission between implants in the human body.

When microelectronic systems are used for medical applications, they have to meet high requirements in terms of biocompatibility, reliability, energy...

Im Focus: When predictions of theoretical chemists become reality

Thomas Heine, Professor of Theoretical Chemistry at TU Dresden, together with his team, first predicted a topological 2D polymer in 2019. Only one year later, an international team led by Italian researchers was able to synthesize these materials and experimentally prove their topological properties. For the renowned journal Nature Materials, this was the occasion to invite Thomas Heine to a News and Views article, which was published this week. Under the title "Making 2D Topological Polymers a reality" Prof. Heine describes how his theory became a reality.

Ultrathin materials are extremely interesting as building blocks for next generation nano electronic devices, as it is much easier to make circuits and other...

Im Focus: Rolling into the deep

Scientists took a leukocyte as the blueprint and developed a microrobot that has the size, shape and moving capabilities of a white blood cell. Simulating a blood vessel in a laboratory setting, they succeeded in magnetically navigating the ball-shaped microroller through this dynamic and dense environment. The drug-delivery vehicle withstood the simulated blood flow, pushing the developments in targeted drug delivery a step further: inside the body, there is no better access route to all tissues and organs than the circulatory system. A robot that could actually travel through this finely woven web would revolutionize the minimally-invasive treatment of illnesses.

A team of scientists from the Max Planck Institute for Intelligent Systems (MPI-IS) in Stuttgart invented a tiny microrobot that resembles a white blood cell...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Dresden Nexus Conference 2020: Same Time, Virtual Format, Registration Opened

19.05.2020 | Event News

Aachen Machine Tool Colloquium AWK'21 will take place on June 10 and 11, 2021

07.04.2020 | Event News

International Coral Reef Symposium in Bremen Postponed by a Year

06.04.2020 | Event News

 
Latest News

Black nitrogen: Bayreuth researchers discover new high-pressure material and solve a puzzle of the periodic table

29.05.2020 | Materials Sciences

Argonne researchers create active material out of microscopic spinning particles

29.05.2020 | Materials Sciences

Smart windows that self-illuminate on rainy days

29.05.2020 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>