Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New research suggests a potentially damaging effect of extremely low frequency electromagnetic fields

17.07.2002

The effect of extremely low frequency electromagnetic fields (ELF-EMF), such as those emitted around high-voltage transmission lines on human health, is controversial. Some studies suggest an association between exposure to ELF-EMF and incidence of leukaemia, although little direct evidence exists that exposure causes damage to biological molecules. A new study, published in the Cancer Cell International, presents experimental evidence to show that extremely low frequency electro-magnetic fields can have a potentially damaging effect on the process of cell division in (already) radiation-injured cells, which could lead to them becoming cancerous. Cell division and the growth cycle rely on two major events. The first involves the replication of the cell`s genetic material (DNA). The second involves cell separation into two daughter cells. These steps are separated by two pauses or "gaps", the first occurs after cells have divided, but before the next round of DNA synthesis (G1) and the second between DNA synthesis and division (G2). These "gaps" allow the cell to take stock of each stage of the process before progressing to the next. The checkpoint in G1 prevents cells from duplicating their DNA if conditions are unfavourable, whilst the checkpoint in G2 stops cells from dividing when damage has occurred to the chromosomes (DNA). These checkpoints effectively police the process of cell division so that risk of damaged cells replicating is minimised.

When the molecules involved in cell division are damaged by ionising radiation, for example, it can lead to uncontrolled growth and the development of cancer. The research in Cancer Cell International examines the effects of combined ELF-EMF and ionising radiation on human cells. The researchers could not find any change in the process of cell division in cells exposed to ELF-EMF alone, but exposure to ionising radiation predictably caused the process of division to slow down as the cells were held at each checkpoint in order to repair the damage. It was anticipated that the combined effect of ELF-EMF and ionising radiation would further slow down cell cycle. However, cell division was slightly faster in 12 out of 20 experiments, but never slower.

It is well known that ionising radiation can itself cause cancer, but it seems that ELF-EMF makes the cells push on into division where errors become compounded. The researchers suggest that ELF-EMF may interfere with the G2 checkpoint that normally stops damaged cells entering division before they have had the opportunity to repair the damage, increasing the chances of them becoming cancerous.

The study is clearly at a preliminary stage; however, the researchers hope that this will open up a new line of investigation and help to understand the risks associated with ELF-EMF, for example, suspected in communities living in close proximity to high voltage transmission lines.

Gordon Fletcher | AlphaGalileo
Further information:
http://www.biomedcentral.com/info/pr-releases.asp?pr=20020716
http://www.cancerci.com/content/2/1/3

More articles from Life Sciences:

nachricht X-ray scattering shines light on protein folding
10.07.2020 | The Korea Advanced Institute of Science and Technology (KAIST)

nachricht Surprisingly many peculiar long introns found in brain genes
10.07.2020 | Moscow Institute of Physics and Technology

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The spin state story: Observation of the quantum spin liquid state in novel material

New insight into the spin behavior in an exotic state of matter puts us closer to next-generation spintronic devices

Aside from the deep understanding of the natural world that quantum physics theory offers, scientists worldwide are working tirelessly to bring forth a...

Im Focus: Excitation of robust materials

Kiel physics team observed extremely fast electronic changes in real time in a special material class

In physics, they are currently the subject of intensive research; in electronics, they could enable completely new functions. So-called topological materials...

Im Focus: Electrons in the fast lane

Solar cells based on perovskite compounds could soon make electricity generation from sunlight even more efficient and cheaper. The laboratory efficiency of these perovskite solar cells already exceeds that of the well-known silicon solar cells. An international team led by Stefan Weber from the Max Planck Institute for Polymer Research (MPI-P) in Mainz has found microscopic structures in perovskite crystals that can guide the charge transport in the solar cell. Clever alignment of these "electron highways" could make perovskite solar cells even more powerful.

Solar cells convert sunlight into electricity. During this process, the electrons of the material inside the cell absorb the energy of the light....

Im Focus: The lightest electromagnetic shielding material in the world

Empa researchers have succeeded in applying aerogels to microelectronics: Aerogels based on cellulose nanofibers can effectively shield electromagnetic radiation over a wide frequency range – and they are unrivalled in terms of weight.

Electric motors and electronic devices generate electromagnetic fields that sometimes have to be shielded in order not to affect neighboring electronic...

Im Focus: Gentle wall contact – the right scenario for a fusion power plant

Quasi-continuous power exhaust developed as a wall-friendly method on ASDEX Upgrade

A promising operating mode for the plasma of a future power plant has been developed at the ASDEX Upgrade fusion device at Max Planck Institute for Plasma...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Contact Tracing Apps against COVID-19: German National Academy Leopoldina hosts international virtual panel discussion

07.07.2020 | Event News

International conference QuApps shows status quo of quantum technology

02.07.2020 | Event News

Dresden Nexus Conference 2020: Same Time, Virtual Format, Registration Opened

19.05.2020 | Event News

 
Latest News

X-ray scattering shines light on protein folding

10.07.2020 | Life Sciences

Looking at linkers helps to join the dots

10.07.2020 | Materials Sciences

Surprisingly many peculiar long introns found in brain genes

10.07.2020 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>