Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers Create Molecule That Nudges Nerve Stem Cells to Mature

16.06.2008
Inspired by a chance discovery during another experiment, researchers at UT Southwestern Medical Center have created a small molecule that stimulates nerve stem cells to begin maturing into nerve cells in culture.

This finding might someday allow a person’s own nerve stem cells to be grown outside the body, stimulated into maturity, and then re-implanted as working nerve cells to treat various diseases, the researchers said.

“This provides a critical starting point for neuro-regenerative medicine and brain cancer chemotherapy,” said Dr. Jenny Hsieh, assistant professor of molecular biology and senior author of the paper, which appears online today and in the June 17 issue of Nature Chemical Biology.

The creation of the molecule allowed the researchers to uncover some of the biochemical steps that happen as nerve cells mature. It also showed that large-scale screening of compounds can provide starting points for developing drugs to treat disorders such as Huntington’s disease, traumatic brain injury or cancer.

... more about:
»Hsieh »Isx-9 »Molecule »Nerve

The scientists began this project as a result of a separate study in which they were screening 147,000 compounds to see which could stimulate stem cells cultivated from rodent embryos to become heart cells. Unexpectedly, five molecules stimulated the cells to transform into forms resembling nerve cells. The researchers then created a variation of these molecules, a new compound called Isx-9 (for isoxazole-9). Isx-9 was easier to use than its initially discovered relatives because it worked at a much lower concentration and also dissolved more easily in water.

“It was completely serendipitous that we uncovered this neurogenic [nerve-creating] small molecule,” Dr. Hsieh said. “I think it’s one of the most powerful neurogenic small molecules on the planet. In theory, this molecule could provoke full maturation, to the point that the new nerve cells could fire, generating the electrical signals needed for full functioning.”

Nerve stem cells live in scattered groups in various areas of the brain. They are capable of becoming several different types of cells, not all of which are nerve cells.

In the study, rodent nerve stem cells from an area of the brain called the hippocampus were cultured with Isx-9. They clustered together and developed spiky appendages called neurites, which typically happens when nerve cells are grown in culture.

Isx-9 also prevented the stem cells from developing into non-nerve cells and was more potent than other neurogenic substances in stimulating nerve-cell development. The molecule generated two to three times more nerve cells than other commonly used compounds.

Neuroscientists believed for decades that the adult mammalian brain could not grow new nerve cells. Instead, they thought, learning and memory were strictly a matter of the brain making new connections between existing cells.

It is now known, however, that the brain constantly creates new nerve cells. In the hippocampus, which is involved with learning and memory, stem cells mature into full-blown nerve cells at a rate of thousands a day, Dr. Hsieh said.

Scientists know that when a mature nerve cell sends a chemical signal called a neurotransmitter to a stem cell, the immature cell begins to mature, but they don’t know what biochemical pathways or genes are involved, Dr. Hsieh said.

“The big gap in our knowledge is how to control these stem cells,” she said.

Isx-9 appeared to act like a neurotransmitter-like signal on the nerve stem cells, the researchers found. By culturing the stem cells with the compound, the scientists identified a possible biochemical pathway by which stem cells begin to become nerve cells.

The researchers next plan to test Isx-9 on a large number of different combinations of RNA, the chemical cousin of DNA, to see on which genes the compound might be working. They have also applied for a patent on Isx-9 and its relatives.

Other UT Southwestern researchers involved in the study were Dr. Jay Schneider, assistant professor of internal medicine; Dr. Zhengliang Gao, postdoctoral researcher in molecular biology; Dr. Shijie Li, postdoctoral researcher in molecular genetics; Midhat Farooqi, a student in the Medical Scientist Training Program; Dr. Tie-Shan Tang, instructor of physiology; Dr. Ilya Bezprozvanny, professor of physiology; and Dr. Douglas Frantz, assistant professor of biochemistry.

The work was supported by the Haberecht Wild-Hare Idea Program, the Donald W. Reynolds Foundation, the National Institute of Neurological Disorders and Stroke, the Ellison Medical Foundation, the Welch Foundation and the UT Southwestern President’s Research Council.

Dr. Jenny Hsieh -- http://www.utsouthwestern.edu/findfac/professional/0,2356,75845,00.html

Aline McKenzie | newswise
Further information:
http://www.utsouthwestern.edu

Further reports about: Hsieh Isx-9 Molecule Nerve

More articles from Life Sciences:

nachricht New eDNA technology used to quickly assess coral reefs
18.04.2019 | University of Hawaii at Manoa

nachricht New automated biological-sample analysis systems to accelerate disease detection
18.04.2019 | Polytechnique Montréal

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Explosion on Jupiter-sized star 10 times more powerful than ever seen on our sun

A stellar flare 10 times more powerful than anything seen on our sun has burst from an ultracool star almost the same size as Jupiter

  • Coolest and smallest star to produce a superflare found
  • Star is a tenth of the radius of our Sun
  • Researchers led by University of Warwick could only see...

Im Focus: Quantum simulation more stable than expected

A localization phenomenon boosts the accuracy of solving quantum many-body problems with quantum computers which are otherwise challenging for conventional computers. This brings such digital quantum simulation within reach on quantum devices available today.

Quantum computers promise to solve certain computational problems exponentially faster than any classical machine. “A particularly promising application is the...

Im Focus: Largest, fastest array of microscopic 'traffic cops' for optical communications

The technology could revolutionize how information travels through data centers and artificial intelligence networks

Engineers at the University of California, Berkeley have built a new photonic switch that can control the direction of light passing through optical fibers...

Im Focus: A long-distance relationship in femtoseconds

Physicists observe how electron-hole pairs drift apart at ultrafast speed, but still remain strongly bound.

Modern electronics relies on ultrafast charge motion on ever shorter length scales. Physicists from Regensburg and Gothenburg have now succeeded in resolving a...

Im Focus: Researchers 3D print metamaterials with novel optical properties

Engineers create novel optical devices, including a moth eye-inspired omnidirectional microwave antenna

A team of engineers at Tufts University has developed a series of 3D printed metamaterials with unique microwave or optical properties that go beyond what is...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

First dust conference in the Central Asian part of the earth’s dust belt

15.04.2019 | Event News

Fraunhofer FHR at the IEEE Radar Conference 2019 in Boston, USA

09.04.2019 | Event News

 
Latest News

New automated biological-sample analysis systems to accelerate disease detection

18.04.2019 | Life Sciences

Explosion on Jupiter-sized star 10 times more powerful than ever seen on our sun

18.04.2019 | Physics and Astronomy

New eDNA technology used to quickly assess coral reefs

18.04.2019 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>