Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The cooperative view: New evidence suggests a symbiogenetic origin for the centrosome

08.05.2008
There are two ways in which cooperation is the theme of a paper published this week by Mark Alliegro and Mary Anne Alliegro, scientists at the Marine Biological Laboratory’s (MBL) Josephine Bay Paul Center.

One is revealed in the paper’s acknowledgements, where the Alliegros thank those who helped them after Hurricane Katrina completely disrupted their laboratory at Louisiana State University (LSU) in New Orleans – and their lives – in 2005.

The second is the paper’s scientific theme: the origin of the centrosome, a component of animal cells that functions in cell division. In their paper, published in Proceedings of the National Academy of Sciences, the Alliegros give evidence that the centrosome evolved through symbiogenesis – in which previously independent organisms fuse, become mutually dependent, and over time, become a single composite organism — rather than by the evolutionary process of random, heritable mutations and natural selection.

The Alliegros moved to the MBL permanently in September 2007, after two years of attempting to forge on in a devastated New Orleans. “We realized, if we stayed there, our research program would not survive,” says Mark Alliegro, who was a professor at LSU Health Sciences Center.

... more about:
»Alliegro »Origin »RNA »centrosome »genes

The origin of the centrosome, their paper points out, has been controversial for many years. The theory of symbiogenesis as a mechanism of evolution has also stirred debate since it was introduced in the 1920s and subsequently elaborated in the 1960s by Lynn Margulis of University of Massachusetts, Amherst. Today, only two cellular components – the mitochondria and the chloroplasts – are generally accepted by evolutionary biologists as having a symbiogenetic origin. The Alliegros’ paper suggests that centrosomes are another likely candidate.

They base their argument on evidence that the centrosomes, which they obtained from the eggs of the surf clam Spisula, contain RNA that is likely a remnant of a once-independent, simpler genome that was incorporated by symbiosis.

“Most animal genes have introns, regions that are transcribed into RNA but then spliced out,” says Alliegro. “But if you look at viral genes or bacterial genes, they have little or no introns. It turns out the genes for Spisula centrosomal RNAs have few or no introns. They are a special set of RNAs that derived from intron-poor or intron-less genes, which may very well support the idea that they come from a simpler organism, like a virus or bacteria.”

The Alliegros lost their RNA library due to Katrina, and in their paper they acknowledge Gloria Giarratano of LSU Health Sciences Center, who helped them re-clone the library from DNA they recovered in the hurricane’s aftermath. They also thank Bruce and Sharon Waddell of Slidell, Louisiana, in whose home they lived after Katrina, and where “our laboratory was resurrected in part from the dining room table”; as well as Carol Burdsal and other colleagues at Tulane University, where they temporarily set up a new lab.

Robert Palazzo of Rensselaer Polytechnic Institute, a longtime visiting investigator at the MBL, is acknowledged for providing the centrosome preparation for the original RNA extractions as well as advice and encouragement. This work was supported by the National Institutes of Health as well as post-Katrina emergency recovery funds from the Society for Developmental Biology.

Diana Kenney | EurekAlert!
Further information:
http://www.mbl.edu

Further reports about: Alliegro Origin RNA centrosome genes

More articles from Life Sciences:

nachricht Turning carbon dioxide into liquid fuel
06.08.2020 | DOE/Argonne National Laboratory

nachricht Tellurium makes the difference
06.08.2020 | Friedrich-Schiller-Universität Jena

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: ScanCut project completed: laser cutting enables more intricate plug connector designs

Scientists at the Fraunhofer Institute for Laser Technology ILT have come up with a striking new addition to contact stamping technologies in the ERDF research project ScanCut. In collaboration with industry partners from North Rhine-Westphalia, the Aachen-based team of researchers developed a hybrid manufacturing process for the laser cutting of thin-walled metal strips. This new process makes it possible to fabricate even the tiniest details of contact parts in an eco-friendly, high-precision and efficient manner.

Plug connectors are tiny and, at first glance, unremarkable – yet modern vehicles would be unable to function without them. Several thousand plug connectors...

Im Focus: New Strategy Against Osteoporosis

An international research team has found a new approach that may be able to reduce bone loss in osteoporosis and maintain bone health.

Osteoporosis is the most common age-related bone disease which affects hundreds of millions of individuals worldwide. It is estimated that one in three women...

Im Focus: AI & single-cell genomics

New software predicts cell fate

Traditional single-cell sequencing methods help to reveal insights about cellular differences and functions - but they do this with static snapshots only...

Im Focus: TU Graz Researchers synthesize nanoparticles tailored for special applications

“Core-shell” clusters pave the way for new efficient nanomaterials that make catalysts, magnetic and laser sensors or measuring devices for detecting electromagnetic radiation more efficient.

Whether in innovative high-tech materials, more powerful computer chips, pharmaceuticals or in the field of renewable energies, nanoparticles – smallest...

Im Focus: Tailored light inspired by nature

An international research team with Prof. Cornelia Denz from the Institute of Applied Physics at the University of Münster develop for the first time light fields using caustics that do not change during propagation. With the new method, the physicists cleverly exploit light structures that can be seen in rainbows or when light is transmitted through drinking glasses.

Modern applications as high resolution microsopy or micro- or nanoscale material processing require customized laser beams that do not change during...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

“Conference on Laser Polishing – LaP 2020”: The final touches for surfaces

23.07.2020 | Event News

Conference radar for cybersecurity

21.07.2020 | Event News

Contact Tracing Apps against COVID-19: German National Academy Leopoldina hosts international virtual panel discussion

07.07.2020 | Event News

 
Latest News

Rare Earth Elements in Norwegian Fjords?

06.08.2020 | Earth Sciences

Anode material for safe batteries with a long cycle life

06.08.2020 | Power and Electrical Engineering

Turning carbon dioxide into liquid fuel

06.08.2020 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>