Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Evolution vs. Intelligent Design

17.04.2008
There is heated debate taking place over whether organisms are the result of intelligent design or evolution.

The proponents of intelligent design believe that chance and selection are too casual and slow to allow complex new properties to arise. In particular, they argue that the intermediate steps in shuffling the genes to make something new are likely to scramble the existing system and be bad for the organism ("half an eye is bad for you").

The work, directed by Mark Isalan, leader of the group Gene Network Engineering and Luis Serrano, coordinator of the research programme Systems Biology and leader of the group Design of Biological Systems, from the Centre for Genomic Regulation in Barcelona, Spain, will be published tomorrow in the prestigious magazine Nature.

Although it’s true that it seems incredible that organisms could be able to face extreme mutation processes and gene reorganization, Isalan et al. show just that. This work describes a new method that links information networks in the genome of the bacterium Escherichia coli that are not usually communicating with each other. Not only do most of the bacteria survive with the new transcription networks, but some gain new properties that allow them to do better than the original bacteria in extreme conditions. For example, some survive better at 50°C or have a longer lifespan after growing to maturity.

... more about:
»Evolution »networks »properties

Organisms appear to have an innate capacity to allow evolution. This new and revolutionary methodology opens the door to a much more rapid evolution that offers multiple new phenotypes or properties.

This will have useful applications in biotechnology, for example in the production of biofuel from more efficient microorgansims. Ultimately, evolving cellular gene networks may allow the production of new properties in a wide variety of cells, with profound implications for human health.

Gloria Lligadas | alfa
Further information:
http://www.crg.es

Further reports about: Evolution networks properties

More articles from Life Sciences:

nachricht Bioenergy cropland expansion could be as bad for biodiversity as climate change
11.12.2018 | Senckenberg Forschungsinstitut und Naturmuseen

nachricht How glial cells develop in the brain from neural precursor cells
11.12.2018 | Universitätsmedizin der Johannes Gutenberg-Universität Mainz

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Topological material switched off and on for the first time

Key advance for future topological transistors

Over the last decade, there has been much excitement about the discovery, recognised by the Nobel Prize in Physics only two years ago, that there are two types...

Im Focus: Researchers develop method to transfer entire 2D circuits to any smooth surface

What if a sensor sensing a thing could be part of the thing itself? Rice University engineers believe they have a two-dimensional solution to do just that.

Rice engineers led by materials scientists Pulickel Ajayan and Jun Lou have developed a method to make atom-flat sensors that seamlessly integrate with devices...

Im Focus: Three components on one chip

Scientists at the University of Stuttgart and the Karlsruhe Institute of Technology (KIT) succeed in important further development on the way to quantum Computers.

Quantum computers one day should be able to solve certain computing problems much faster than a classical computer. One of the most promising approaches is...

Im Focus: Substitute for rare earth metal oxides

New Project SNAPSTER: Novel luminescent materials by encapsulating phosphorescent metal clusters with organic liquid crystals

Nowadays energy conversion in lighting and optoelectronic devices requires the use of rare earth oxides.

Im Focus: A bit of a stretch... material that thickens as it's pulled

Scientists have discovered the first synthetic material that becomes thicker - at the molecular level - as it is stretched.

Researchers led by Dr Devesh Mistry from the University of Leeds discovered a new non-porous material that has unique and inherent "auxetic" stretching...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

New Plastics Economy Investor Forum - Meeting Point for Innovations

10.12.2018 | Event News

EGU 2019 meeting: Media registration now open

06.12.2018 | Event News

Expert Panel on the Future of HPC in Engineering

03.12.2018 | Event News

 
Latest News

Electronic evidence of non-Fermi liquid behaviors in an iron-based superconductor

11.12.2018 | Physics and Astronomy

Topological material switched off and on for the first time

11.12.2018 | Materials Sciences

NIST's antenna evaluation method could help boost 5G network capacity and cut costs

11.12.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>