Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Columbia geneticists uncover new gene involved in determining hair texture and density in humans

27.02.2008
Findings may lead to new treatments for excessive or abnormal hair growth

A Columbia University Medical Center research team has discovered a new gene involved in determining hair texture in humans. The team's genetic analysis demonstrated that mutations in a gene, known as P2RY5, cause hereditary "woolly hair" — hair that is coarse, dry, tightly curled and sparse.

"Our findings indicate that mutations in the P2RY5 gene cause hereditary woolly hair. This is significant as it represents the discovery of the first new gene whose primary function seems to be the determination of hair texture in humans," said lead author Angela M. Christiano, Ph.D., the Richard and Mildred Rhodebeck Professor of Dermatology and Genetics & Development, at the Columbia University College of Physicians and Surgeons.

"This genetic finding may inform the development of new treatments for excessive or unwanted hair, or potentially hair growth." added Dr. Christiano.

... more about:
»GPCR »Genetic »Mutation »P2RY5 »families »hereditary »represent »woolly

Findings were published in an online edition of Nature Genetics at 1 p.m. EST on Sunday, February 24, 2008. The paper will appear in the journal's March print issue.

The genetic causes of hair texture in humans are largely unknown. Hair shafts emerge from the surface of the skin and display wide variability in texture and color among individuals of different populations around the world.

Since research has shown that woolly hair was common among Pakistani families, Dr. Christiano and her colleagues set out to determine why this type of hair was specific to this group of people. They hoped that finding the genetic basis of this unique type of hair would help them to distinguish other genetic hair types, and to learn more about the genetic underpinnings of different hair textures.

Much of Dr. Christiano's research has focused on dermatologic variants found in Pakistani families, as they often represent ideal subjects for genetic analyses as they tend to be relatively homogeneous, with close-knit families that tend to live nearby one another, and often intermarry.

To identify a gene involved in controlling hair texture, Dr. Christiano and her team performed a genetic analysis of six families of Pakistani origin, who all shared hereditary woolly hair. The cause of hereditary woolly hair was found to be a mutation in a gene called P2RY5. Until this discovery, the pathogenesis of hereditary woolly hair had been largely unknown.

As the authors write in the paper, "The bulb region of plucked hairs from woolly hair patients showed irregular bending without attachment of the root sheath." They propose that mutations in P2RY5 most likely result in hair follicle disruptions, which then compromise its anchoring to the hair shaft and cause the abnormal bending of the bulb region, leading to woolly hair.

Dr. Christiano's discoveries have led to the identification of several genes controlling human hair growth. It remains to be determined whether common variants on the P2RY5 gene can also contribute to naturally occurring variations in hair texture between different human populations.

According to the researchers, P2RY5 is the first gene of a type known as a G-protein coupled receptor (GPCR) implicated in a human hair disorder — thereby making it possible to develop drugs that target this receptor. GPCRs represent the largest known class of molecular targets with proven therapeutic value. It is estimated that more than 40 percent of existing drugs work by targeting GPCR drug targets; this target class represents a large fraction of the total biological targets against which FDA-approved oral drugs are directed. Of the top 200 best-selling prescription drugs more than 20 percent interact with GPCRs, providing worldwide sales of over $20 billion.

Elizabeth Streich | EurekAlert!
Further information:
http://www.columbia.edu
http://www.cumc.columbia.edu

Further reports about: GPCR Genetic Mutation P2RY5 families hereditary represent woolly

More articles from Life Sciences:

nachricht Colorectal cancer risk factors decrypted
13.07.2018 | Max-Planck-Institut für Stoffwechselforschung

nachricht Algae Have Land Genes
13.07.2018 | Julius-Maximilians-Universität Würzburg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Research finds new molecular structures in boron-based nanoclusters

13.07.2018 | Materials Sciences

Algae Have Land Genes

13.07.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>