Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Spread of Bird Flu Strains Slowed at Some Borders

27.02.2008
Study Results Detail H5N1 Migration, Provide Means to Measure Intervention Success

Several strains of the bird flu virus that raged across southern China were blocked from entering Thailand and Vietnam, UC Irvine researchers have discovered.

This first-ever statistical analysis of influenza A H5N1’s genetic diversity helps scientists better understand how the virus migrates and could, in the future, help health officials determine whether efforts to thwart its spread were successful.

“Some countries appear more exposed to bird flu invasion than others. Learning that is a good step in discovering which social and ecological factors promote, or, on the other hand, hamper the virus’ spread,” said Robert G. Wallace, a postdoctoral researcher and lead author of the study.

... more about:
»H5N1 »PLoS »Researcher »Virus »flu

The results appear online Feb. 27 in the journal PLoS ONE.

Since its emergence in 1996, H5N1 has only sporadically been passed from birds to humans. Although only about 350 human cases of this influenza have been recorded worldwide, its high mortality rate raises concerns that if the virus mutates in such a way that humans can pass it on, a deadly flu pandemic may result. More than 60 percent of humans who contract the virus die from it.

In this study, Wallace and Walter M. Fitch, professor of ecology and evolutionary biology at UCI, analyzed nearly 500 publicly available genetic sequences of proteins found on the surface of the influenza virus. These sequences originally were collected from 28 Eurasian and African localities through 2006.

The study also showed that H5N1 strains circulating in Indonesia, Japan, Thailand and Vietnam shared the most evolutionary history with H5N1 circulating in several provinces in southern China. The provinces, Guangdong, Fujian and Hong Kong, are engaged in intensive international trade, including poultry. Previous research has concluded the poultry trade is a key mechanism for the spread of the H5N1 virus.

The researchers suggest that health officials trying to block new strains of the virus from spreading could use the methods employed in this study to determine whether interventions are working.

“You can think of it as a type of evolutionary forensics,” Wallace said. “When a bomb explodes, investigators can determine how many charges went off and the strength and direction of the blast, all from the resulting damage alone. Here we can determine the way H5N1 has spread and evolved by the resulting viral diversity.”

The National Institutes of Health funded the study.

Disclaimer
The following press release refers to an upcoming article in PLoS ONE. The release has been provided by the article authors and/or their institutions. Any opinions expressed in this are the personal views of the contributors, and do not necessarily represent the views or policies of PLoS. PLoS expressly disclaims any and all warranties and liability in connection with the information found in the release and article and your use of such information.

Rebecca Walton | alfa
Further information:
http://www.plosone.org/doi/pone.0001697

Further reports about: H5N1 PLoS Researcher Virus flu

More articles from Life Sciences:

nachricht World’s Largest Study on Allergic Rhinitis Reveals new Risk Genes
17.07.2018 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Plant mothers talk to their embryos via the hormone auxin
17.07.2018 | Institute of Science and Technology Austria

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Microscopic trampoline may help create networks of quantum computers

17.07.2018 | Information Technology

In borophene, boundaries are no barrier

17.07.2018 | Materials Sciences

The role of Sodium for the Enhancement of Solar Cells

17.07.2018 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>