Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Another way to grow blood vessels

25.02.2008
Scientists find alternate pathway to angiogenesis

Researchers at Dana-Farber Cancer Institute have found a previously unknown molecular pathway in mice that spurs the growth of new blood vessels when body parts are jeopardized by poor circulation.

At present, their observation adds to the understanding of blood vessel formation. In the future, though, the researchers suggest it is possible that the pathway could be manipulated as a means of treating heart and blood vessel diseases and cancer. The paper appears in the Feb. 21 issue of the journal Nature.

Bruce Spiegelman, PhD, and his colleagues at Dana-Farber discovered that PGC-1alpha – a key metabolic regulatory molecule – senses a dangerously low level of oxygen and nutrients when circulation is cut off and then triggers the formation of new blood vessels to re-supply the oxygen-starved area – a process known as angiogenesis.

A similar response to hypoxia, or oxygen deprivation, has been observed before. The response is regulated by a group of proteins known as Hypoxia Inducible Factors (HIF) that detect hypoxia and activate the production of VEGF (vascular endothelial growth factor). VEGF, in turn, stimulates angiogenesis.

The newly discovered pathway provides “an independent way of getting there,” says Spiegelman, who is also a professor of cell biology at Harvard Medical School. Along with lead author Zoltan Arany, MD, PhD, and colleagues, Spiegelman found that HIF was completely left out of the loop when PGC-1alpha accomplished the same feat in single cells and in live mice using a different regulator, known as ERR-alpha (estrogen-related receptor-alpha).

When the scientists knocked out the activity of PGC-1 alpha (which was first identified in the Spiegelman lab) in cells and live mice, the hypoxia-induced response and angiogenesis were sharply decreased.

“We were surprised to find this novel mechanism,” comments Spiegelman.

“It was apparently there all along,” adds Arany. “That means there is now a second pathway that you need to know about if you are trying to activate or inhibit angiogenesis.”

Angiogenesis occurs in the normal development of the body, but it’s also an on-call service when an injury or an artery blockage – the cause of heart attacks and strokes – leaves normal tissues starved for blood. Generating a new network of small vessels to nourish the area can protect against further injury. Muscle-building exercise also triggers angiogenesis to provide circulation for the enlarging muscle tissue.

On the downside, cancer has evolved the ability to commandeer VEGF and other angiogenic factors to encourage blood vessel growth around tumors that have outgrown their oxygen supplies.

In recent years, companies have developed a number of drugs that manipulate the angiogenic pathway – in both directions. Among them are anti-angiogenic cancer drugs, including thalidomide and Avastin, which are designed to starve tumors by blocking the formation of blood vessels. Avastin is also used to dampen the abnormal growth of small vessels in the retina that causes macular degeneration in the eye.

Conversely, researchers have tried using VEGF and other compounds to improve the circulation in the legs and feet – and even heart muscle – of patients with poor blood supply.

“We’re still far from having good drugs to modulate angiogenesis through the HIF pathway,” commented Arany. The discovery of a second, alternate pathway, involving PGC-1 alpha and ERR-alpha, leading to angiogenesis may offer new opportunities for therapy “in any situation where angiogenesis is a factor,” he said.

Bill Schaller | EurekAlert!
Further information:
http://www.dfci.harvard.edu
http://www.dana-farber.org

Further reports about: Angiogenesis Spiegelman VEGF blood vessel circulation

More articles from Life Sciences:

nachricht Chips, light and coding moves the front line in beating bacteria
16.08.2018 | Okinawa Institute of Science and Technology (OIST) Graduate University

nachricht Protein droplets keep neurons at the ready and immune system in balance
16.08.2018 | Howard Hughes Medical Institute

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

Im Focus: Lining up surprising behaviors of superconductor with one of the world's strongest magnets

Scientists have discovered that the electrical resistance of a copper-oxide compound depends on the magnetic field in a very unusual way -- a finding that could help direct the search for materials that can perfectly conduct electricity at room temperatur

What happens when really powerful magnets--capable of producing magnetic fields nearly two million times stronger than Earth's--are applied to materials that...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

2018 Work Research Conference

25.07.2018 | Event News

 
Latest News

Diving robots find Antarctic seas exhale surprising amounts of carbon dioxide in winter

16.08.2018 | Earth Sciences

Protein droplets keep neurons at the ready and immune system in balance

16.08.2018 | Life Sciences

3D inks that can be erased selectively

16.08.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>