Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

DNA 'barcode' identified for plants

06.02.2008
A 'barcode' gene that can be used to distinguish between the majority of plant species on Earth has been identified by scientists who publish their findings in the Proceedings of the National Academy of Sciences journal today (Monday 4 February 2008).

This gene, which can be used to identify plants using a small sample, could lead to new ways of easily cataloguing different types of plants in species-rich areas like rainforests. It could also lead to accurate methods for identifying plant ingredients in powdered substances, such as in traditional Chinese medicines, and could help to monitor and prevent the illegal transportation of endangered plant species.

The team behind the discovery found that DNA sequences of the gene 'matK' differ among plant species, but are nearly identical in plants of the same species. This means that the matK gene can provide scientists with an easy way of distinguishing between different plants, even closely related species that may look the same to the human eye.

The researchers made this discovery by analysing the DNA from different plant species. They found that when one plant species was closely related to another, differences were usually detected in the matK DNA.

The researchers, led by Dr Vincent Savolainen, dual appointee at Imperial College London's Department of Life Sciences and the Royal Botanic Gardens, Kew, carried out two large-scale field studies: one on the exceptionally diverse species of orchids found in the tropical forests of Costa Rica, and the other on the trees and shrubs of the Kruger National Park in South Africa. Dr Savolainen and his colleagues in the UK worked alongside collaborators from the Universities of Johannesburg and Costa Rica who played a key role in this new discovery.

Using specimens collected from Costa Rica, Dr Savolainen and colleagues were able to use the matK gene to identify 1,600 species of orchid. In the course of this work, they discovered that what was previously assumed to be one species of orchid was actually two distinct species that live on different slopes of the mountains and have differently shaped flowers adapted for different pollinating insects.

In South Africa the team was able to use the matK gene to identify the trees and shrubs of the Kruger National Park, also well known for its big game animals.

Dr Savolainen explains that in the long run the aim is to build on the genetic information his team gathered from Costa Rica and South Africa to create a genetic database of the matK DNA of as many plant species as possible, so that samples can be compared to this database and different species accurately identified.

"In the future we'd like to see this idea of reading plants' genetic barcodes translated into a portable device that can be taken into any environment, which can quickly and easily analyse any plant sample's matK DNA and compare it to a vast database of information, allowing almost instantaneous identification, " he says.

Although Dr Savolainen concedes that such technological applications may be some years away from realisation, he says the potential uses of the matK gene are substantial: "There are so many circumstances in which traditional taxonomic identification of plant species is not practical - whether it be at ports and airports to check if species are being transported illegally, or places like Costa Rica where the sheer richness of one group of plants, like orchids, makes accurate cataloguing difficult."

The matK gene may not, however, be able to be used to identify every plant species on Earth. In a few groups of species, additional genetic information may be required for species-level identification because hybridization - where species cross-breed and genetic material is rearranged - may confuse the information provided by matK.

This research was funded by the Defra Darwin Initiative, the Universities of Johannesburg and Costa Rica, the South African National Research Foundation, the Royal Botanic Gardens, Kew, and the Royal Society.

Joan Ruddock, Minister for Climate Change and Biodiversity said: "This is a great breakthrough that could save many endangered plants. The Defra-funded Darwin Initiative has a reputation for producing real and lasting results and I congratulate everyone involved in this project which could have huge benefits for plant identification and conservation in the future."

Danielle Reeves | alfa
Further information:
http://www.darwin.gov.uk/
http://www.imperial.ac.uk
http://www.kew.org

Further reports about: DNA Identification Savolainen matK orchid plant species

More articles from Life Sciences:

nachricht Nanocages in the lab and in the computer: how DNA-based dendrimers transport nanoparticles
19.10.2018 | University of Vienna

nachricht Less animal experiments on the horizon: Multi-organ chip awarded
19.10.2018 | Fraunhofer-Institut für Werkstoff- und Strahltechnik IWS

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Goodbye, silicon? On the way to new electronic materials with metal-organic networks

Scientists at the Max Planck Institute for Polymer Research (MPI-P) in Mainz (Germany) together with scientists from Dresden, Leipzig, Sofia (Bulgaria) and Madrid (Spain) have now developed and characterized a novel, metal-organic material which displays electrical properties mimicking those of highly crystalline silicon. The material which can easily be fabricated at room temperature could serve as a replacement for expensive conventional inorganic materials used in optoelectronics.

Silicon, a so called semiconductor, is currently widely employed for the development of components such as solar cells, LEDs or computer chips. High purity...

Im Focus: Storage & Transport of highly volatile Gases made safer & cheaper by the use of “Kinetic Trapping"

Augsburg chemists present a new technology for compressing, storing and transporting highly volatile gases in porous frameworks/New prospects for gas-powered vehicles

Storage of highly volatile gases has always been a major technological challenge, not least for use in the automotive sector, for, for example, methane or...

Im Focus: Disrupting crystalline order to restore superfluidity

When we put water in a freezer, water molecules crystallize and form ice. This change from one phase of matter to another is called a phase transition. While this transition, and countless others that occur in nature, typically takes place at the same fixed conditions, such as the freezing point, one can ask how it can be influenced in a controlled way.

We are all familiar with such control of the freezing transition, as it is an essential ingredient in the art of making a sorbet or a slushy. To make a cold...

Im Focus: Micro energy harvesters for the Internet of Things

Fraunhofer IWS Dresden scientists print electronic layers with polymer ink

Thin organic layers provide machines and equipment with new functions. They enable, for example, tiny energy recuperators. In future, these will be installed...

Im Focus: Dynamik einzelner Proteine

Neue Messmethode erlaubt es Forschenden, die Bewegung von Molekülen lange und genau zu verfolgen

Das Zusammenspiel aus Struktur und Dynamik bestimmt die Funktion von Proteinen, den molekularen Werkzeugen der Zelle. Durch Fortschritte in der...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Conference to pave the way for new therapies

17.10.2018 | Event News

Berlin5GWeek: Private industrial networks and temporary 5G connectivity islands

16.10.2018 | Event News

5th International Conference on Cellular Materials (CellMAT), Scientific Programme online

02.10.2018 | Event News

 
Latest News

Nanocages in the lab and in the computer: how DNA-based dendrimers transport nanoparticles

19.10.2018 | Life Sciences

Thin films from Braunschweig on the way to Mercury

19.10.2018 | Physics and Astronomy

App-App-Hooray! - Innovative Kits for AR Applications

19.10.2018 | Trade Fair News

VideoLinks
Science & Research
Overview of more VideoLinks >>>