Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Genesis of adult leukemia mapped

01.02.2008
Long-term bacterial infections like pneumonia can cause a type of white blood corpuscle to transform into tumor cells. A study from Linköping University in Sweden and elsewhere explains how this can be the genesis of the disease chronic lymphocytic leukemia (CLL).

Chronic lymphocytic leukemia (CLL)-­the most common form of leukemia in adults-­arises from a special type of white blood corpuscle, B lymphocytes, which normally produce antibodies to combat bacteria and viruses that we are exposed to. It is not known today what events lead to this disease.

A research team headed by Anders Rosén, professor of cell biology at Linköping University, has now established for the first time that the antibodies that CLL cells produce are highly specialized to recognize certain structures on the surface of bacteria and the body's own proteins (autoantigens).

The findings are being published on Monday in the respected hematological journal Blood. The key point is that the CLL antibodies also bind to damaged and dying (apoptotic) cells, which indicates that the B lymphocytes that give rise to CLL may be frontline defense cells. These are thought to have the extremely important task of using their antibodies to rapidly reveal the slightest breach in damaged mucous lining or skin, created by bacteria or other microorganisms.

... more about:
»Antibodies »CLL »leukemia »lymphocytes

But in long-term infections, these B lymphocytes can start to multiply excessively and rapidly. This increases the risk of chromosome damage, which in turn can cause them to turn into leukemia cells. The study now being published contributes to our understanding of how these B lymphocytes function and why they can be transformed into tumors.

CLL afflicts 400-500 people in Sweden each year, primarily among those aged 65-70 and more often among men than women. The disease has a highly varied course, with many patients living for decades with hardly any treatment, while others die within a few years despite treatment.

The research team behind the study also includes the doctoral students Eva Hellqvist and Anna Lanemo-Myrhinder, Linköping University, and Sohvi Hörkkö, Oulu, Finland, and Richard Rosenquist, Uppsala, Sweden.

The article, "A new perspective: molecular motifs on oxidized-LDL, apoptotic cells, and bacteria are targets for chronic lymphocytic leukemia antibodies" is being published in Blood's First Edition Papers.

Contact: Anders Rosén, phone: +46 (0)13-222794; cell phone: +46 (0)707-303460, anders.rosen@ibk.liu.se

Pressofficer Åke Hjelm; ake.hjelm@liu.se; +46-13 281 395

Åke Hjelm | idw
Further information:
http://www.vr.se
http://bloodjournal.hematologylibrary.org/papbyrecent.dtl

Further reports about: Antibodies CLL leukemia lymphocytes

More articles from Life Sciences:

nachricht Turning carbon dioxide into liquid fuel
06.08.2020 | DOE/Argonne National Laboratory

nachricht Tellurium makes the difference
06.08.2020 | Friedrich-Schiller-Universität Jena

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: ScanCut project completed: laser cutting enables more intricate plug connector designs

Scientists at the Fraunhofer Institute for Laser Technology ILT have come up with a striking new addition to contact stamping technologies in the ERDF research project ScanCut. In collaboration with industry partners from North Rhine-Westphalia, the Aachen-based team of researchers developed a hybrid manufacturing process for the laser cutting of thin-walled metal strips. This new process makes it possible to fabricate even the tiniest details of contact parts in an eco-friendly, high-precision and efficient manner.

Plug connectors are tiny and, at first glance, unremarkable – yet modern vehicles would be unable to function without them. Several thousand plug connectors...

Im Focus: New Strategy Against Osteoporosis

An international research team has found a new approach that may be able to reduce bone loss in osteoporosis and maintain bone health.

Osteoporosis is the most common age-related bone disease which affects hundreds of millions of individuals worldwide. It is estimated that one in three women...

Im Focus: AI & single-cell genomics

New software predicts cell fate

Traditional single-cell sequencing methods help to reveal insights about cellular differences and functions - but they do this with static snapshots only...

Im Focus: TU Graz Researchers synthesize nanoparticles tailored for special applications

“Core-shell” clusters pave the way for new efficient nanomaterials that make catalysts, magnetic and laser sensors or measuring devices for detecting electromagnetic radiation more efficient.

Whether in innovative high-tech materials, more powerful computer chips, pharmaceuticals or in the field of renewable energies, nanoparticles – smallest...

Im Focus: Tailored light inspired by nature

An international research team with Prof. Cornelia Denz from the Institute of Applied Physics at the University of Münster develop for the first time light fields using caustics that do not change during propagation. With the new method, the physicists cleverly exploit light structures that can be seen in rainbows or when light is transmitted through drinking glasses.

Modern applications as high resolution microsopy or micro- or nanoscale material processing require customized laser beams that do not change during...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

“Conference on Laser Polishing – LaP 2020”: The final touches for surfaces

23.07.2020 | Event News

Conference radar for cybersecurity

21.07.2020 | Event News

Contact Tracing Apps against COVID-19: German National Academy Leopoldina hosts international virtual panel discussion

07.07.2020 | Event News

 
Latest News

Rare Earth Elements in Norwegian Fjords?

06.08.2020 | Earth Sciences

Anode material for safe batteries with a long cycle life

06.08.2020 | Power and Electrical Engineering

Turning carbon dioxide into liquid fuel

06.08.2020 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>