Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Predators do more than kill prey

21.01.2008
UC Riverside study shows significant evolutionary changes follow predators’ indirect effects on ecosystems

The direct effect predators have on their prey is to kill them. The evolutionary changes that can result from this direct effect include prey that are younger at maturity and that produce more offspring.

But killing prey also has indirect effects – rarely characterized or measured – such as a decline in the number of surviving prey, resulting, in turn, in more food available to survivors.

In a new study characterizing the complex ecological interactions that shape how organisms evolve, UC Riverside biologists Matthew Walsh and David Reznick present a novel way of quantifying these indirect effects by showing that prey adapt to food availability as well as the presence of predators.

“Our study can serve as a model for how humans alter ecosystems when they remove key predators like wolves and bears from land or tuna and billfish from seas,” said Reznick, a professor of biology.

He and Walsh compared life history traits between Trinidadian fish communities impacted by the presence of predators. They settled on Trinidadian waterfalls as study sites because the waterfalls serve as barriers to the upstream distribution of predator and prey fish, thereby creating distinct ecological communities in similar habitats only a few hundred meters from each other – like test-tubes in nature.

First, they used killifish from “killifish-only” localities, above waterfalls, where killifish are the only fish present; and killifish from “high predation” localities, below these waterfalls, where the killifish coexist with a diversity of predators. Second, they reared the grandchildren of these killifish in a lab at UCR to ensure that any differences observed between populations are likely to be genetic, and not environmental, in origin.

To quantify the direct and indirect effects of predation, Walsh and Reznick reared the killifish under multiple food levels that closely approximated the natural differences in food availability that the killifish experienced in Trinidad.

Their results demonstrate how predators’ direct and indirect effects shaped the way killifish evolved:

Killifish from high predation environments are younger at maturity and produce more offspring – the predicted direct evolutionary response to high mortality rates.

More food caused all fish to grow faster, then mature at a larger body size and earlier age, plus produce more babies.

Killifish from high predation environments gained more from high rations – an indirect evolutionary response to high mortality rates. Their increase in size at maturity, decrease in age at maturity and increase in the number of babies produced were all more pronounced than those seen in killifish from the killifish-only environment – differences that show that the high predation killifish were better adapted to convert high food rations into the production of more babies.

Study results appear in the Jan. 15 issue of the Proceedings of the National Academy of Sciences.

“Research has generally focused on the evolutionary implications of the direct effects of interactions between predator and prey,” said Walsh, a graduate student working in Reznick’s lab in the Department of Biology and the first author of the research paper. “But we found that the indirect effects of these interactions can be as important. Clearly, organisms become adapted to a given food level and evolve to best exploit their resources.”

The researchers argue that in addition to killing prey, the indirect evolutionary and ecological effects of predators cause a restructuring of the community, which in turn contributes to shaping how killifish evolve.

“Removing predators will not only alter the structure of the ecosystem, but will also cause a wider diversity of evolutionary changes in prey than had been considered,” said Reznick, the paper’s only coauthor. “Conversely, it means that the reintroduction of predators, which is an ongoing practice, such as in the reintroduction of wolves in the United States, demands more caution than is currently practiced since the prey will have adapted to a new environment in the time that predators were absent and will be ill prepared in more ways than had been imagined for the reintroduction of predators.

“Likewise, the crash that we have seen in the populations of many commercially exploited species of fish, and their failure to recover when fishing pressure is reduced, has been attributed to such indirect restructuring of the ecosystem.

“Since predator-induced indirect increases in resource availability are common in both terrestrial and aquatic ecosystems, the evolutionary consequences of these interactions are potentially a very important component of evolutionary change in nature,” Reznick added. “Moreover, biologists have observed evolutionary change occurring on short ecological timescales in nature, on the order of a few years to decades, suggesting that such interactions are contributing to overall ecosystem functioning and health.”

Iqbal Pittalwala | EurekAlert!
Further information:
http://www.ucr.edu

Further reports about: Evolutionary Maturity Reznick ecological ecosystem interactions

More articles from Life Sciences:

nachricht New yeast species discovered in Braunschweig, Germany
13.12.2019 | Leibniz-Institut DSMZ-Deutsche Sammlung von Mikroorganismen und Zellkulturen GmbH

nachricht Saliva test shows promise for earlier and easier detection of mouth and throat cancer
13.12.2019 | Elsevier

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Virus multiplication in 3D

Vaccinia viruses serve as a vaccine against human smallpox and as the basis of new cancer therapies. Two studies now provide fascinating insights into their unusual propagation strategy at the atomic level.

For viruses to multiply, they usually need the support of the cells they infect. In many cases, only in their host’s nucleus can they find the machines,...

Im Focus: Cheers! Maxwell's electromagnetism extended to smaller scales

More than one hundred and fifty years have passed since the publication of James Clerk Maxwell's "A Dynamical Theory of the Electromagnetic Field" (1865). What would our lives be without this publication?

It is difficult to imagine, as this treatise revolutionized our fundamental understanding of electric fields, magnetic fields, and light. The twenty original...

Im Focus: Highly charged ion paves the way towards new physics

In a joint experimental and theoretical work performed at the Heidelberg Max Planck Institute for Nuclear Physics, an international team of physicists detected for the first time an orbital crossing in the highly charged ion Pr⁹⁺. Optical spectra were recorded employing an electron beam ion trap and analysed with the aid of atomic structure calculations. A proposed nHz-wide transition has been identified and its energy was determined with high precision. Theory predicts a very high sensitivity to new physics and extremely low susceptibility to external perturbations for this “clock line” making it a unique candidate for proposed precision studies.

Laser spectroscopy of neutral atoms and singly charged ions has reached astonishing precision by merit of a chain of technological advances during the past...

Im Focus: Ultrafast stimulated emission microscopy of single nanocrystals in Science

The ability to investigate the dynamics of single particle at the nano-scale and femtosecond level remained an unfathomed dream for years. It was not until the dawn of the 21st century that nanotechnology and femtoscience gradually merged together and the first ultrafast microscopy of individual quantum dots (QDs) and molecules was accomplished.

Ultrafast microscopy studies entirely rely on detecting nanoparticles or single molecules with luminescence techniques, which require efficient emitters to...

Im Focus: How to induce magnetism in graphene

Graphene, a two-dimensional structure made of carbon, is a material with excellent mechanical, electronic and optical properties. However, it did not seem suitable for magnetic applications. Together with international partners, Empa researchers have now succeeded in synthesizing a unique nanographene predicted in the 1970s, which conclusively demonstrates that carbon in very specific forms has magnetic properties that could permit future spintronic applications. The results have just been published in the renowned journal Nature Nanotechnology.

Depending on the shape and orientation of their edges, graphene nanostructures (also known as nanographenes) can have very different properties – for example,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

The Future of Work

03.12.2019 | Event News

First International Conference on Agrophotovoltaics in August 2020

15.11.2019 | Event News

Laser Symposium on Electromobility in Aachen: trends for the mobility revolution

15.11.2019 | Event News

 
Latest News

Supporting structures of wind turbines contribute to wind farm blockage effect

13.12.2019 | Physics and Astronomy

Chinese team makes nanoscopy breakthrough

13.12.2019 | Physics and Astronomy

Tiny quantum sensors watch materials transform under pressure

13.12.2019 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>